I nt ernet Engi neering Task Force (I ETF) J. Alakuijala

Request for Comments: 7932 Z. Szabadka
Cat egory: | nformational Googl e, Inc
| SSN: 2070-1721 July 2016

Brotli Conpressed Data Fornmat
Abstract

This specification defines a | ossless conpressed data fornmat that
conpresses data using a conbination of the LZ77 al gorithm and Huf f man
coding, with efficiency conparable to the best currently avail abl e
gener al - pur pose conpressi on net hods.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for informational purposes.

This docunment is a product of the Internet Engi neering Task Force
(IETF). It has been approved for publication by the Internet

Engi neering Steering G oup (IESG. Not all docunents approved by the
| ESG are a candidate for any level of Internet Standard; see Section
2 of RFC 7841.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/info/rfc7932

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Al akui jal a & Szabadka I nf or mat i onal [Page 1]

RFC 7932 Brotli July 2016

Tabl e of Contents

1. IntroduCti On 3
1. L. PUIPOSE . 3
1.2. Intended Audi €NCe 3
L. 3. SCOPE oo 4
1.4, ConpliancCe e 4
1.5. Definitions of Terns and Conventions Used 4

1.5.1. Packing into Bytes 5

2. Conpressed Representation Overview 6

3. Conpressed Representation of Prefix Codes 10
3.1. Introduction to Prefix Coding 10
3.2. Use of Prefix Coding in the Brotli Format 11
3.3. Alphabet Sizes 13
3.4, Sinple Prefix Codes 14
3.5. Conplex Prefix Codes i 15

4. Encoding of DiStanCest 17

5. Encoding of Literal Insertion Lengths and Copy Lengths 19

6. Encoding of Block-Switch Conmands, 22

7. Context Modeling 23
7.1. Context Mddes and Context |D Lookup for Literals 23
7.2. Context IDfor Distances 26
7.3. Encoding of the Context Map 26

8. Static DicCtionary e 28

9. Conpressed Data Format i 31
9.1. Format of the StreamHeader 31
9.2. Format of the Meta-Block Header 32
9.3. Format of the Meta-Block Data 35

10. Decoding Algorithm 36

11. Considerations for Conpressor Inplenentations 38
11.1. Trivial ConmpressSOr ... e e e e 39
11.2. Aligning Conpressed Meta-Blocks to Byte Boundaries 39
11.3. Creating Self-Contained Parts within the

Compressed Data 40

12. Security Considerati oOns 41

13. TANA Considerati ONSt e e 42

14. Informative References i 43

Appendi x A Static Dictionary Data 44

Appendi x B. List of Word Transformations 124

Appendi x C. Conputing CRC-32 Check Values 127

Appendi x D. Source Code 127

ACKNOW EAgMENt S 127

AUt hor S’ Addr BSSES . .ot 128

Al akui j al a & Szabadka I nf or mat i onal [Page 2]

RFC 7932 Brotli July 2016

1. Introduction
1.1. Purpose

The purpose of this specification is to define a |ossless conpressed
data format that:

* is independent of CPU type, operating system file system and
character set; hence, it can be used for interchange.

* can be produced or consuned, even for an arbitrarily I|ong,
sequentially presented input data stream using only an a
priori bounded anount of internediate storage; hence, it can be
used in data conmunications or simlar structures, such as Unix
filters.

* conpresses data with a conpression ratio conmparable to the best
currently avail abl e general - purpose conpressi on nethods, in
particul ar, considerably better than the gzip program

* deconpresses nmuch faster than current LZMA inpl ementations.

The data format defined by this specification does not attenpt to:

* allow random access to conpressed data.

* conpress specialized data (e.g., raster graphics) as densely as
the best currently avail able specialized al gorithns.

This docunent is the authoritative specification of the brotl
conpressed data format. It defines the set of valid brotl
conpressed data streans and a decoder al gorithmthat produces the
unconpressed data streamfroma valid brotli conpressed data stream

1. 2. I nt ended Audi ence

This specification is intended for use by software inplenenters to
conpress data into and/or deconpress data fromthe brotli format.

The text of the specification assunmes a basic background in
progranm ng at the level of bits and other prinmtive data
representations. Famliarity with the technique of Huffrman coding is
hel pful but not required.

Al akui j al a & Szabadka I nf or mat i onal [Page 3]

RFC 7932 Brotli July 2016

This specification uses (heavily) the notations and term nol ogy

i ntroduced in the DEFLATE format specification [RFC1951]. For the
sake of conpl eteness, we always include the whole text of the

rel evant parts of RFC 1951; therefore, fanmliarity with the DEFLATE
format is hel pful but not required.

The conpressed data format defined in this specification is an
integral part of the WOFF File Format 2.0 [WOFF2]; therefore, this
specification is also intended for inplenmenters of WOFF 2.0
conpressors and deconpressors

1.3. Scope

Thi s docunent specifies a nmethod for representing a sequence of bytes
as a (usually shorter) sequence of bits and a nethod for packing the
latter bit sequence into bytes.

1.4. Conpliance

Unl ess ot herwi se indicated below, a conpliant deconpressor nust be
able to accept and deconpress any data set that conforns to all the
specifications presented here. A conpliant conpressor mnust produce
data sets that conformto all the specifications presented here.

1.5. Definitions of Terns and Conventions Used

Byte: 8 bits stored or transmitted as a unit (same as an octet). For
this specification, a byte is exactly 8 bits, even on machi nes that
store a character on a nunber of bits different fromeight. See
bel ow for the nunbering of bits within a byte.

String: a sequence of arbitrary bytes.

Bytes stored within a conputer do not have a "bit order", since they
are always treated as a unit. However, a byte considered as an

i nteger between 0 and 255 does have a nobst and | east significant bit
(I'sb), and since we wite nunbers with the nost significant digit on
the left, we also wite bytes with the nost significant bit (nsb) on

the left. |In the diagranms below, we nunber the bits of a byte so
that bit 0 is the least significant bit, i.e., the bits are numnbered
Fom e oo - +
| 76543210
N +

Al akui j al a & Szabadka I nf or mat i onal [Page 4]

RFC 7932 Brotli July 2016

Wthin a conputer, a nunber nmay occupy multiple bytes. Al multi-
byte nunbers in the fornat described here are stored with the | east
significant byte first (at the lower nmenory address). For exanple,
t he deci mal nunber 520 is stored as:

0 1

E R E R +

| 00001000] 00000010

E R E R +

N N

| |

| + nore significant byte = 2 * 256
+ less significant byte = 8

1.5.1. Packing into Bytes

Thi s docunment does not address the issue of the order in which bits
of a byte are transnmitted on a bit-sequential nedium since the fina
data format described here is byte rather than bit oriented.

However, we describe the conpressed bl ock format bel ow as a sequence
of data elenments of various bit |lengths, not a sequence of bytes.
Therefore, we nust specify how to pack these data el enents into bytes
to formthe final conpressed byte sequence:

* Data elenents are packed into bytes in order of increasing bit
number within the byte, i.e., starting with the | east
significant bit of the byte.

* Data elenents other than prefix codes are packed starting with
the least significant bit of the data elenent. These are
referred to here as "integer values" and are considered
unsi gned.

* Prefix codes are packed starting with the nost significant bit
of the code

In other words, if one were to print out the conpressed data as a
sequence of bytes, starting with the first byte at the *right* nmargin
and proceeding to the *left*, with the nost significant bit of each
byte on the left as usual, one would be able to parse the result from
right to left, with fixed-width elenents in the correct nsb-to-Isb
order and prefix codes in bit-reversed order (i.e., with the first

bit of the code in the relative |Isb position).

As an exanpl e, consider packing the follow ng data elenments into a

sequence of 3 bytes: 3-bit integer value 6, 4-bit integer value 2,
prefix code 110, prefix code 10, 12-bit integer val ue 3628.

Al akui j al a & Szabadka I nf or mat i onal [Page 5]

RFC 7932 Brotli July 2016

byte 2 byte 1 byte 0

E R E R E R +
[11100010] 11000101| 10010110
Fomm e o - Fomm e o - Fomm e o - +
N VASEIVAN N N
| I N B
| | | | e i nteger value 6
| [] R i nteger value 2
| I prefix code 110
| L prefix code 10
R e T i nteger val ue 3628

2. Conpressed Representation Overview

A conmpressed data set consists of a header and a series of neta-

bl ocks. Each neta-bl ock deconpresses to a sequence of 0 to

16, 777,216 (16 M B) unconpressed bytes. The final unconpressed data
is the concatenation of the unconpressed sequences from each neta-

bl ock.

The header contains the size of the sliding wi ndow that was used
during conpression. The deconpressor nust retain at |east that
anount of unconpressed data prior to the current position in the
stream in order to be able to deconpress what follows. The sliding
wi ndow size is a power of two, minus 16, where the power is in the
range of 10 to 24. The possible sliding window sizes range from1
KiB- 16 Bto 16 MB - 16 B

Each neta-bl ock is conpressed using a conbination of the LZ77

al gorithm (Lenpel -Ziv 1977, [LZ77]) and Huf fman coding. The result
of Huffman coding is referred to here as a "prefix code". The prefix
codes for each neta-bl ock are independent of those for previous or
subsequent neta-blocks; the LZ77 algorithmnay use a reference to a
duplicated string occurring in a previous meta-block, up to the
sliding wi ndow size of unconpressed bytes before. In addition, in
the brotli format, a string reference nmay instead refer to a static
dictionary entry.

Each neta-bl ock consists of two parts: a neta-bl ock header that
describes the representation of the conpressed data part and a
conpressed data part. The conpressed data consists of a series of
commands. Each conmand consists of two parts: a sequence of litera
bytes (of strings that have not been detected as duplicated within
the sliding window) and a pointer to a duplicated string, which is
represented as a pair <l ength, backward di stance>. There can be zero
literal bytes in the conmand. The mininmumlength of the string to be

Al akui j al a & Szabadka I nf or mat i onal [Page 6]

RFC 7932 Brotli July 2016

duplicated is two, but the last command in the neta-block is
pernmitted to have only literals and no pointer to a string to
duplicate.

Each command in the conpressed data is represented using three
categories of prefix codes

1) One set of prefix codes are for the literal sequence |engths
(also referred to as literal insertion | engths) and backward
copy lengths. That is, a single code word represents two
I engths: one of the literal sequence and one of the backward

copy.
2) One set of prefix codes are for literals.
3) One set of prefix codes are for distances.

The prefix code descriptions for each neta-bl ock appear in a conpact
formjust before the conpressed data in the neta-bl ock header. The

i nsert-and-copy | ength and distance prefix codes may be foll owed by
extra bits that are added to the base val ues determ ned by the codes.
The nunber of extra bits is determ ned by the code.

One neta-bl ock command then appears as a sequence of prefix codes:
I nsert-and-copy length, literal, literal, ..., literal, distance

where the insert-and-copy |length defines an insertion length and a
copy length. The insertion I ength determ nes the nunber of literals
that inmediately follow. The distance defines how far back to go for
the copy and the copy length determ nes the nunber of bytes to copy.
The resulting unconpressed data is the sequence of bytes:

literal, literal, ..., literal, copy, copy, ..., copy

where the nunber of literal bytes and copy bytes are determ ned by
the insert-and-copy length code. (The nunber of bytes copied for a
static dictionary entry can vary fromthe copy length.)

The | ast conmmand in the neta-block may end with the last literal if
the total unconpressed |length of the neta-block has been satisfied.
In that case, there is no distance in the |ast comand, and the copy
I ength is ignored.

There can be nore than one prefix code for each category, where the
prefix code to use for the next elenment of that category is

determ ned by the context of the conpressed streamthat precedes that
element. Part of that context is three current block types, one for

Al akui j al a & Szabadka I nf or mat i onal [Page 7]

RFC 7932 Brotli July 2016

each category. A block type is in the range of 0..255. For each
category there is a count of how nany el enents of that category
remain to be decoded using the current block type. Once that count

i s expended, a new bl ock type and bl ock count is read fromthe stream
i medi ately preceding the next element of that category, which wll
use the new bl ock type.

The insert-and-copy block type directly determ nes which prefix code
to use for the next insert-and-copy length. For the literal and

di stance el enents, the respective block type is used in conbination
with other context information to determ ne which prefix code to use
for the next el enent.

Consi der the followi ng exanpl e:
(laC0, LO, L1, L2, DO)(laCl, D1)(laC2, L3, L4, D2)(laC3, L5, D3)

The net a-bl ock here has four comuands, contained in parentheses for
clarity, where each of the three categories of synbols within these
conmands can be interpreted using different block types. Here we
separate out each category as its own sequence to show an exanpl e of
bl ock types assigned to those elenents. Each square-bracketed group
is a block that uses the sanme bl ock type

[laCO, laCl][laC2, 1aC3] <-- insert-and-copy: block types 0 and 1
[LO, L2][L2, L3, L4][L5] <-- literals: block types 0, 1, and O
[DO] [D1, D2, D3] <-- distances: block types 0 and 1

The subsequent bl ocks within each bl ock category nmust have different
bl ock types, but we see that block types can be reused later in the
nmet a- bl ock. The bl ock types are nunmbered fromO to the maxi mum bl ock
type nunber of 255, and the first block of each block category is
type 0. The block structure of a neta-block is represented by the
sequence of bl ock-switch commands for each bl ock category, where a

bl ock-switch command is a pair <block type, block count> The bl ock-
switch commands are represented in the conpressed data before the
start of each new bl ock using a prefix code for block types and a
separate prefix code for block counts for each bl ock category. For

t he above exanple, the physical |ayout of the nmeta-block is then

laC0 LO L1 LBlockSwitch(1l, 3) L2 DO laCl DBl ockSwitch(1, 3) D1
| aCBl ockSwi tch(1, 2) laC2 L3 L4 D2 |aC3 LBl ockSwitch(0, 1) L5 D3

where xBl ockSwitch(t, n) switches to block type t for a count of n

elements. In this exanple, note that DBl ockSwitch(1l, 3) inmmediately
precedes the next required distance, D1. It does not follow the |ast

Al akui j al a & Szabadka I nf or mat i onal [Page 8]

RFC 7932 Brotli July 2016

di stance of the previous block, DO. Whenever an elenent of a
category is needed, and the block count for that category has reached
zero, then a new bl ock type and count are read fromthe streamj ust
before readi ng that next el enent.

The bl ock-switch conmands for the first blocks of each category are
not part of the neta-block conpressed data. |Instead, the first block
type is defined to be 0, and the first block count for each category
is encoded in the nmeta-block header. The prefix codes for the block
types and counts, a total of six prefix codes over the three
categories, are defined in a conmpact formin the neta-bl ock header

Each category of value (insert-and-copy lengths, literals, and

di stances) can be encoded with any prefix code froma collection of
prefix codes belonging to the sanme category appearing in the neta-
bl ock header. The particular prefix code used can depend on two
factors: the block type of the block the value appears in and the
context of the value. In the case of the literals, the context is
the previous two bytes in the unconpressed data; and in the case of
di stances, the context is the copy length fromthe same command. For
i nsert-and-copy | engths, no context is used and the prefix code
depends only on the block type. 1In the case of literals and

di stances, the context is mapped to a context IDin the range 0..63
for literals and 0..3 for distances. The matrix of the prefix code
i ndexes for each block type and context ID, called the context nap,
is encoded in a conpact formin the neta-bl ock header

For exanple, the prefix code to use to decode L2 depends on the bl ock
type (1), and the literal context ID determ ned by the two
unconpressed bytes that were decoded fromLO and L1. Sinmilarly, the
prefix code to use to decode DO depends on the block type (0) and the
di stance context |ID deternined by the copy | ength decoded from | aCo.
The prefix code to use to decode |1aC3 depends only on the bl ock type

(1).

In addition to the parts listed above (prefix code for insert-and-
copy lengths, literals, distances, block types, block counts, and the
context map), the neta-block header contains the nunber of
unconpressed bytes coded in the neta-block and two additiona
paraneters used in the representation of match di stances: the nunber
of postfix bits and the nunber of direct distance codes.

A conpressed neta-block nay be marked in the header as the last neta-
bl ock, which term nates the conpressed stream

A neta-bl ock may, instead, sinply store the unconpressed data

directly as bytes on byte boundaries with no coding or matching
strings. In this case, the neta-block header infornmation only

Al akui j al a & Szabadka I nf or mat i onal [Page 9]

RFC 7932 Brotli July 2016

3.

3.

contai ns the nunber of unconpressed bytes and the indication that the
met a- bl ock is unconpressed. An unconpressed neta-bl ock cannot be the
| ast net a- bl ock.

A net a-bl ock may al so be enpty, which generates no unconpressed data
at all. An enpty neta-block may contain netadata infornation as
bytes starting on byte boundaries, which are not part of either the
sliding wi ndow or the unconpressed data. Thus, these netadata bytes
cannot be used to create matching strings in subsequent neta-bl ocks
and are not used as context bytes for literals.

Conpressed Representation of Prefix Codes
1. Introduction to Prefix Coding

Prefix coding represents synbols froman a priori known al phabet by
bit sequences (codes), one code for each synbol, in a manner such
that different synbols nmay be represented by bit sequences of
different | engths, but a parser can always parse an encoded string
unanbi guousl y synbol - by-synbol .

We define a prefix code in ternms of a binary tree in which the two
edges descending from each non-1eaf node are labeled O and 1, and in
which the | eaf nodes correspond one-for-one with (are |abeled with)
the synbols of the al phabet. The code for a synbol is the sequence
of 0's and 1's on the edges leading fromthe root to the |eaf |abeled
with that synbol. For exanple:

/\ Synbol Code
o1 ------ ----
/ \ A 00
I\ B B 1
0 1 C 011
/ \ D 010
A /\
0 1
/ \
D C

A parser can decode the next synbol fromthe conpressed stream by
wal ki ng down the tree fromthe root, at each step choosing the edge
corresponding to the next conpressed data bit.

G ven an al phabet with known synmbol frequencies, the Huffnan
algorithmallows the construction of an optimal prefix code (one that
represents strings with those synbol frequencies using the fewest

Al akui j al a & Szabadka I nf or mat i onal [Page 10]

RFC 7932 Brotli July 2016

bits of any possible prefix codes for that al phabet). Such a prefix
code is called a Huf frran code. (See [HUFFMAN] for additiona
i nformati on on Huf f man codes.)

In the brotli format, note that the prefix codes for the various

al phabets nmust not exceed certain nmaxi num code lengths. This
constraint conplicates the algorithmfor conputing code | engths from
synbol frequencies. Again, see [HUFFMAN] for details

3.2. Use of Prefix Coding in the Brotli Format

The prefix codes used for each al phabet in the brotli format are
canoni cal prefix codes, which have two additional rules:

* Al codes of a given bit |length have | exicographically
consecutive values, in the same order as the synbols they
represent;

* Shorter codes | exicographically precede | onger codes.

We coul d recode the exanple above to followthis rule as follows,
assunming that the order of the al phabet is ABCD

Synbol Code
A 10
B 0
C 110
D 111

That is, O precedes 10, which precedes 11x, and 110 and 111 are
| exi cographical ly consecuti ve.

Gven this rule, we can define the canonical prefix code for an

al phabet just by giving the bit lengths of the codes for each synbo
of the al phabet in order; this is sufficient to determ ne the actua
codes. In our exanple, the code is conpletely defined by the
sequence of bit lengths (2, 1, 3, 3). The following algorithm
generates the codes as integers, intended to be read fromnost to

| east significant bit. The code lengths are initially in
tree[l].Len; the codes are produced in tree[l]. Code.

1) Count the nunber of codes for each code length. Let
bl _count[N] be the nunmber of codes of length N, N>=1

Al akui j al a & Szabadka I nf or mat i onal [Page 11]

RFC 7932 Brotli July 2016

2) Find the nunerical value of the snallest code for each code
| engt h:

code = 0;

bl _count[0] = 0;

for (bits = 1; bits <= MAX BITS; bits++) {
code = (code + bl _count[bits-1]) << 1
next code[bits] = code

}

3) Assign nunerical values to all codes, using consecutive val ues
for all codes of the sane length with the base val ues
deternmined at step 2. Codes that are never used (which have a
bit length of zero) nust not be assigned a val ue.

for (n 0; n <= max_code; n++) {
I en tree[n]. Len;
if (len!=0) {
tree[n]. Code = next _code[l en];
next _code[| en] ++;

Exanpl e:

Consi der the al phabet ABCDEFGH, with bit lengths (3, 3, 3, 3, 3, 2,
4, 4). After step 1, we have:

N bl _count[N]
2 1
3 5
4 2

Step 2 conputes the foll owi ng next _code val ues:

N next code[N|
1 0

2 0

3 2

4 14

Al akui j al a & Szabadka I nf or mat i onal [Page 12]

RFC 7932

Brotli

Step 3 produces the foll owi ng code val ues:

IOTMMUOUO®>

3. 3.

Prefix codes are used for different purposes in the brotl

ABRANWWWWW

Al phabet Sizes

Cod
010
011
100
101
110
00

111
111

e

0
1

and each purpose has a different al phabet size.

t he al phabet size is 256.

al phabet size is 704.

26.

For di stance codes,
in conpressing the context map

For bl ock count codes,
bl ock type codes

based on paraneters defined in | ater sections.
sunmmari zes the al phabet sizes for the various prefix codes and the

sections of this docunent

dommemeeeaaaaaa +
| Prefix Code |
B +
| literal |
S +
| distance |
| |
. +
| insert-and-copy

| length |
S +
| bl ock count |
. +
| block type |

Al akui j al a & Szabadka

in which they are def

Al phabet Size
256
16 + NDI RECT +

(48 << NPOSTFI X)

NBLTYPESx + 2,
(where x is I, L,

NTREESx + RLEMAXX
(where x is L or D

I nf or mat i ona

For

literal
For insert-and-copy |ength codes,
t he al phabet size is
and the prefix codes used
t he al phabet size is dynamic and is

July 2016

format,
codes,
t he

The follow ng table

i ned.

[Page 13]

RFC 7932 Brotli July 2016

3.4. Sinple Prefix Codes

The first two bits of the conpressed representation of each prefix
code di stingui sh between sinple and conpl ex prefix codes. If this
value is 1, then a sinple prefix code follows as described in this
section. Oherwi se, a conplex prefix code follows as described in
Section 3.5.

A sinple prefix code can have up to four synmbols with non-zero code
length. The format of the sinple prefix code is as follows:

2 bits: value of 1 indicates a sinple prefix code
2 bits: NSYM- 1, where NSYM = nunber of synbols coded

NSYM synbol s, each encoded usi ng ALPHABET BITS bits
1 bit: tree-select, present only for NSYM = 4

The val ue of ALPHABET BI TS depends on the al phabet of the prefix
code: it is the smallest nunber of bits that can represent al
synbols in the al phabet. For exanple, for the al phabet of litera
bytes, ALPHABET BITS is 8. The value of each of the NSYM synbol s
above is the value of the ALPHABET BITS width integer value. If the
integer value is greater than or equal to the al phabet size, or the
value is identical to a previous value, then the stream should be
rejected as invalid.

Note that the NSYM synbols may not be presented in sorted order
Prefix codes of the same bit |ength nmust be assigned to the synbols
in sorted order.

The (non-zero) code lengths of the synbols can be reconstructed as
fol | ows:

* if NSYM =1, the code length for the one synbol is zero -- when
encoding this synmbol in the conpressed data streamusing this
prefix code, no actual bits are emitted. Sinilarly, when
decodi ng a synbol using this prefix code, no bits are read and
the one synbol is returned.

* if NSYM = 2, both synbols have code length 1
* if NSYM = 3, the code lengths for the synbols are 1, 2, 2 in

the order they appear in the representation of the sinple
prefix code

Al akui j al a & Szabadka I nf or mat i onal [Page 14]

RFC 7932 Brotli July 2016

* if NSYM = 4, the code lengths (in order of synbols decoded)
depend on the tree-select bit: 2, 2, 2, 2 (tree-select bit 0),
or 1, 2, 3, 3 (tree-select bit 1).

3.5. Conplex Prefix Codes

A conmpl ex prefix code is a canonical prefix code, defined by the
sequence of code |engths, as discussed in Section 3.2. For even
greater conpactness, the code | ength sequences thensel ves are
conpressed using a prefix code. The al phabet for code lengths is as
fol | ows:

0..15: Represent code |engths of 0..15
16: Copy the previous non-zero code length 3..6 tines.
The next 2 bits indicate repeat |ength
(0=3, ... , 3=06)
If this is the first code length, or all previous
code lengths are zero, a code length of 8 is
repeated 3..6 tines.
A repeated code | ength code of 16 nodifies the
repeat count of the previous one as follows:
repeat count = (4 * (repeat count - 2)) +
(3..6 on the next 2 bits)
Exanple: Codes 7, 16 (+2 bits 11), 16 (+2 bits 10)
will expand to 22 code lengths of 7
(L+4* (6 - 2) +5)
17: Repeat a code length of O for 3..10 tines.
The next 3 bits indicate repeat |ength
(0=3, ... , 7 =10
A repeated code | ength code of 17 nodifies the
repeat count of the previous one as follows:
repeat count = (8 * (repeat count - 2)) +
(3..10 on the next 3 bhits)

Note that a code of 16 that follows an i medi ately preceding 16
nodi fi es the previous repeat count, which becones the new repeat
count. The sane is true for a 17 following a 17. A sequence of
three or nore 16 codes in a row or three of nore 17 codes in a rowis
possi bl e, nodifying the count each time. Only the final repeat count
is used. The nodification only applies if the sane code follows. A
16 repeat does not nodify an i medi ately preceding 17 count nor vice
versa.

A code length of O indicates that the corresponding synbol in the

al phabet will not occur in the conpressed data, and it shoul d not
participate in the prefix code construction algorithmgiven earlier.
A compl ex prefix code nust have at |east two non-zero code |engths

Al akui j al a & Szabadka I nf or mat i onal [Page 15]

RFC 7932 Brotli July 2016

The bit lengths of the prefix code over the code | ength al phabet are
conpressed with the followi ng variable-length code (as it appears in
the conpressed data, where the bits are parsed fromright to left):

Synbol Code
0 00
1 0111
2 011
3 10
4 01
5 1111

We can now define the format of the conplex prefix code as foll ows:

0 2 bits: HSKIP, the number of skipped code |engths, can have val ues
of 0, 2, or 3. The skipped I engths are taken to be zero. (An
HSKI P of 1 indicates a Sinple prefix code.)

0 Code lengths for synbols in the code | ength al phabet given just
above, in the order: 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11,
12, 13, 14, 15. If HSKIP is 2, then the code | engths for synbols
1 and 2 are zero, and the first code length is for synmbol 3. |If
HSKIP is 3, then the code length for synbol 3 is also zero, and
the first code length is for synbol 4.

The code | engths of code |l ength synbols are between 0 and 5, and
they are represented with 2..4 bits according to the vari abl e-

| ength code above. A code length of 0 neans the correspondi ng
code length synbol is not used.

If HSKIP is 2 or 3, a respective nunber of |eading code |engths
are inplicit zeros and are not present in the code | ength sequence
above.

If there are at |east two non-zero code lengths, any trailing zero
code lengths are onitted, i.e., the last code length in the
sequence nust be non-zero. 1In this case, the sumof (32 >> code

| ength) over all the non-zero code |engths nust equal to 32.

If the lengths have been read for the entire code | ength al phabet
and there was only one non-zero code length, then the prefix code
has one synbol whose code has zero length. In this case, that
synbol results in no bits being enitted by the conpressor and no
bits consumed by the deconpressor. That single synbol is

i medi ately returned when this code is decoded. An exanpl e of
where this occurs is if the entire code to be represented has
synbols of length 8. For exanple, a literal code that represents

Al akui j al a & Szabadka I nf or mat i onal [Page 16]

RFC 7932 Brotli July 2016

4.

all literal values with equal probability. 1In this case the
single synbol is 16, which repeats the previous length. The
previous length is taken to be 8 before any code | ength code
| engths are read.

0 Sequence of code length synbols, which is at nost the size of the
al phabet, encoded using the code I ength prefix code. Any trailing
0 or 17 nust be omitted, i.e., the last encoded code | ength synbol
nmust be between 1 and 16. The sum of (32768 >> code |ength) over
all the non-zero code lengths in the al phabet, including those
encoded using repeat code(s) of 16, must be equal to 32768. |If
the nunber of tines to repeat the previous length or repeat a zero
length would result in nore lengths in total than the nunber of
synbols in the al phabet, then the stream should be rejected as
i nvalid.

Encodi ng of Di stances

As described in Section 2, one conponent of a conpressed neta-bl ock
is a sequence of backward distances. |n this section, we provide the
details to the encodi ng of distances.

Each di stance in the conpressed data part of a neta-block is
represented with a pair <distance code, extra bits> The di stance
code and the extra bits are encoded back-to-back, the distance code
i s encoded using a prefix code over the distance al phabet, while the
extra bits value is encoded as a fixed-width integer value. The
nunber of extra bits can be 0..24, and it is dependent on the

di stance code.

To convert a distance code and associ ated extra bits to a backward

di stance, we need the sequence of past distances and two additiona
paraneters: the nunber of "postfix bits", denoted by NPOSTFI X (O0..3),
and the nunber of direct distance codes, denoted by NDI RECT (0..120).
Both of these paraneters are encoded in the neta-bl ock header. W
will also use the follow ng derived paraneter

POSTFI X_MASK = (1 << NPOSTFIX) - 1

Al akui j al a & Szabadka I nf or mat i onal [Page 17]

RFC 7932 Brotli July 2016

The first 16 distance synbols are special synmbols that reference past
di stances as foll ows:

| ast di stance
second-to-| ast di stance
third-to-1ast distance
fourth-to-1last distance
| ast di stance
| ast di stance
| ast di stance
| ast di stance
| ast di stance -
| ast di stance + 3

10: second-to-last distance -
11: second-to-last distance +
12: second-to-| ast di stance -
13: second-to-| ast di stance +
14: second-to-last distance -
15: second-to-last distance +

+ v 4

CoNoORLNEREO
WNN PR R

WWNN PP

The ring buffer of the four last distances is initialized by the

val ues 16, 15, 11, and 4 (i.e., the fourth-to-last is set to 16, the
third-to-last to 15, the second-to-last to 11, and the |ast distance
to 4) at the beginning of the *streant (as opposed to the beginning
of the nmeta-block), and it is not reset at neta-bl ock boundaries.
When a di stance synbol 0 appears, the distance it represents (i.e.
the I ast distance in the sequence of distances) is not pushed to the
ring buffer of last distances; in other words, the expression
"second-to-|ast distance" neans the second-to-last distance that was
not represented by a 0 distance synbol (and simlar for "third-to-

| ast distance" and "fourth-to-last distance"). Sinmilarly, distances
that represent static dictionary words (see Section 8) are not pushed
to the ring buffer of last distances.

If a special distance synbol resolves to a zero or negative val ue,
the stream should be rejected as invalid.

If NDIRECT is greater than zero, then the next NDI RECT di stance
synbols, from 16 to 15 + NDI RECT, represent distances from1l to

NDI RECT. Neither the special distance synbols nor the NDI RECT direct
di stance synbols are followed by any extra bits.

Di stance synbols 16 + NDI RECT and greater all have extra bits, where
t he nunber of extra bits for a distance synbol "dcode" is given by
the follow ng fornul a:

ndistbits = 1 + ((dcode - NDIRECT - 16) >> (NPOSTFI X + 1))

Al akui j al a & Szabadka I nf or mat i onal [Page 18]

RFC 7932 Brotli July 2016

The maxi num nunber of extra bits is 24; therefore, the size of the
di stance synbol al phabet is (16 + NDI RECT + (48 << NPCSTFI X)) .

G ven a di stance synmbol "dcode" (>= 16 + NDIRECT), and extra bits
"dextra", the backward distance is given by the follow ng forml a:

hcode = (dcode - NDI RECT - 16) >> NPOSTFI X

| code = (dcode - NDI RECT - 16) & POSTFI X_MASK

offset = ((2 + (hcode & 1)) << ndistbits) - 4

di stance = ((offset + dextra) << NPOSTFI X) + |lcode + NDIRECT + 1

5. Encoding of Literal Insertion Lengths and Copy Lengths

As described in Section 2, the literal insertion |engths and backward
copy lengths are encoded using a single prefix code. This section
provides the details to this encoding.

Each <insertion length, copy length> pair in the conpressed data part
of a nmeta-block is represented with the following triplet:

<i nsert-and-copy |l ength code, insert extra bits, copy extra bits>

The insert-and-copy |l ength code, the insert extra bits, and the copy
extra bits are encoded back-to-back, the insert-and-copy | ength code
i s encoded using a prefix code over the insert-and-copy |ength code
al phabet, while the extra bits values are encoded as fixed-w dth
i nteger values. The nunber of insert and copy extra bits can be
0..24, and they are dependent on the insert-and-copy |ength code.

Sonme of the insert-and-copy | ength codes al so express the fact that

the di stance synbol of the distance in the sane command is 0, i.e.
t he di stance conponent of the conmand is the sane as that of the
previous command. |In this case, the distance code and extra bits for

the distance are omitted fromthe conpressed data stream

Al akui j al a & Szabadka I nf or mat i onal [Page 19]

RFC 7932

We describe the insert-and-copy | ength code al phabet
| ength code and copy | ength code

| ength code al phabet, al ong
and the range of the insert

(not directly used) insert

al phabets. The synbols of the insert
with the nunber of insert extra bits,

I engths are as foll ows:

Extra

Brotli

Extra

Code Bits Lengths Code Bits Lengths

0 8
1 9
2 10
3 11
4 12
5 13

PRPOOOOOO

6,7 14
8,9 15

The synbol s of the copy | ength code al phabet,

Extra

66. .97
98..129

OO WOWWNDN
w
~
N
©

Extra

Code Bits Lengths Code Bits Lengths

8

9
10
11
12
13
14
15

~NOoO U WNEFO
[cNeolololoNoNoNe)
©oo~NOOWN

Al akui j al a & Szabadka

ArPRhWWNNREPPE
N
N
N
©

I nf or mat i ona

16
17
18
19
20
21
22

July 2016

in terns of the

Extra
Code Bits Lengths
6 130..193
7 194..321
8 322..577
9 578..1089
10 1090..2113
12 2114..6209
14 6210..22593
24 22594..16799809

23

al ong with the nunber
of copy extra bits, and the range of copy lengths are as foll ows:

Extra

Code Bits Lengths

16
17
18
19
20
21
22
23

N =

ArOOO~NO OGIO

582. .

1093

1094. . 2117
2118, . 16779333

[Page 20]

RFC 7932 Brotli July 2016

To convert an insert-and-copy |length code to an insert |ength code
and a copy length code, the follow ng table can be used:

I nsert

| ength Copy | ength code

code 0..7 8..15 16..23
B B +
| | | ,

0..7 | 0..63 | 64..127 | <--- distance synbol 0

| | |
[S [S [S +

I I
16..23 | 448..511 | 576..639 | 640..703

First, look up the cell with the 64 val ue range containing the

i nsert-and-copy length code; this gives the insert |ength code and
the copy | ength code ranges, both 8 values long. The copy length
code within its range is determined by bits 0..2 (counted fromthe

I sb) of the insert-and-copy |length code. The insert |ength code
within its range is deternmined by bits 3..5 (counted fromthe |Ish) of
the insert-and-copy length code. Gven the insert |ength and copy

| ength codes, the actual insert and copy |engths can be obtai ned by
readi ng the nunmber of extra bits given by the tables above.

If the insert-and-copy |length code is between 0 and 127, the distance
code of the command is set to zero (the |ast distance reused).

Al akui j al a & Szabadka I nf or mat i onal [Page 21]

RFC 7932 Brotli July 2016

6. Encoding of Bl ock-Sw tch Commands

As described in Section 2, a block-switch command is a pair <block
type, block count> These are encoded in the conpressed data part of
the meta-bl ock, right before the start of each new bl ock of a
particul ar bl ock category.

Each bl ock type in the conpressed data is represented with a bl ock
type code, encoded using a prefix code over the bl ock type code

al phabet. A block type synbol 0 neans that the new bl ock type is the
same as the type of the previous block fromthe sanme bl ock category,
i.e., the block type that preceded the current type, while a block
type synbol 1 neans that the new bl ock type equals the current block
type plus one. |If the current block type is the nmaxi nal possi bl e,
then a bl ock type synmbol of 1 results in wapping to a new bl ock type
of 0. Block type synbols 2..257 represent block types O0..255,
respectively. The previous and current block types are initialized
to 1 and 0, respectively, at the end of the neta-block header

Since the first block type of each bl ock category is 0, the block
type of the first block-switch command is not encoded in the
conmpressed data. |If a block category has only one bl ock type, the
bl ock count of the first block-switch command is also omtted from
the conpressed data; otherwise, it is encoded in the neta-bl ock
header .

Since the end of the neta-block is detected by the nunber of
unconpressed bytes produced, the block counts for any of the three
cat egori es need not count down to exactly zero at the end of the
net a- bl ock.

The nunber of different block types in each bl ock category, denoted
by NBLTYPESL, NBLTYPESI, and NBLTYPESD for literals, insert-and-copy
| engt hs, and di stances, respectively, is encoded in the neta-block
header, and it nust equal to the |argest bl ock type plus one in that
bl ock category. In other words, the set of literal, insert-and-copy
| ength, and distance block types nust be [0..NBLTYPESL-1],
[0..NBLTYPESI-1], and [O..NBLTYPESD- 1], respectively. Fromthis it
follows that the al phabet size of literal, insert-and-copy |ength,
and di stance bl ock type codes is NBLTYPESL + 2, NBLTYPESI + 2, and
NBLTYPESD + 2, respectively.

Each bl ock count in the conpressed data is represented with a pair
<bl ock count code, extra bits> The bl ock count code and the extra
bits are encoded back-to-back, the block count code is encoded using
a prefix code over the bl ock count code al phabet, while the extra
bits value is encoded as a fixed-width integer value. The nunber of
extra bits can be 0..24, and it is dependent on the bl ock count code.

Al akui j al a & Szabadka I nf or mat i onal [Page 22]

RFC 7932 Brotli July 2016

The synbol s of the bl ock count code al phabet along with the nunber of
extra bits and the range of block counts are as foll ows:

Extra Extra Extra
Code Bits Lengths Code Bits Lengths Code Bits Lengths

0 2 1..4 9 4 65. .80 18 7 369. . 496

1 2 5.8 10 4 81..96 19 8 497..752

2 2 9..12 11 4 97..112 20 9 753..1264

3 2 13..16 12 5 113..144 21 10 1265. . 2288

4 3 17. .24 13 5 145..176 22 11 2289. . 4336

5 3 25..32 14 5 177..208 23 12 4337..8432

6 3 33..40 15 5 209..240 24 13 8433..16624

7 3 41. .48 16 6 241..304 25 24 16625. . 16793840
8 4 49. .64 17 6 305..368

The first bl ock-switch command of each block category is special in
the sense that it is encoded in the neta-bl ock header, and as
described earlier, the block type code is onmtted since it is an
implicit zero

7. Context Modeling

As described in Section 2, the prefix tree used to encode a litera
byte or a distance code depends on the block type and the context |D
This section specifies howto conpute the context ID for a particular
literal and distance code and how to encode the context map that naps
a <block type, context ID> pair to the index of a prefix code in the
array of literal and distance prefix codes.

7.1. Context Mddes and Context |ID Lookup for Literals

The context for encoding the next literal is defined by the last two
bytes in the stream (pl, p2, where pl is the nost recent byte),
regardl ess of whether these bytes are produced by unconpressed neta-
bl ocks, backward references, static dictionary references, or by
literal insertions. At the start of the stream pl and p2 are
initialized to zero

There are four nmethods, called context nodes, to conmpute the Context
I D

* |LSB6, where the Context IDis the value of six |east
significant bits of pil

* MBB6, where the Context IDis the value of six nost significant
bits of p1,

Al akui j al a & Szabadka I nf or mat i onal [Page 23]

July 2016
P2,

p2,

and Lut 2.

IDis a conplex function of pl
and
Lut1,

Brotli
IDis a conplex function of pl

optim zed for conpressing sequences of signed integers.

wher e Cont ext
ID for the UTF8 and Signed context nodes is conputed

wher e t he Cont ext
optinmized for text conpression

UTF8,
Si gned,

*

*
using the foll owing | ookup tables LutO,

The Cont ext

RFC 7932

conNNwWN©O
AT WO
cogwaNON
ONL O
toaNoN®WO o
ATONON
coataNON
ONL O
,,,,,,,, AAdAdAdN MMM
coaaNNY O
ANONON v v o o o o o -
cocoocoaNNANN
FoaNANANNOOS « v v v o o o -
ANODODOOAAAAM MM ™
toogtowaNwoooooaNNN&
NS I WOWOO
,,,,,,,, AAdAdAdOMNm®
cotaNNOO
NSOOWO® - « o o o o o .
cocoocoaNNANN
CoOTANNOSD - o v o o o - -
ATOOOOAAAAM O MO ™
coaAgYaNaNOoOocococooaNNNA
A< L0 OO
,,,,,,,, AAdAdAdOMNm®
COoOO<m©©
NSITITOW o v o e e e o .
cocoocoaNNANN
coaNYTANNOS - - v o - - - -
ATOODOOAAAAM MM ™
coaAgYaNaNOoOocococooaNNNA
A< L0 OO
,,,,,,,, AAdAdAdOMNm®
coogtaNOO
ASOOOO v v v o o o oo -
cocoocoaNNANN
CoONTONOSD - o v o o - - -
ASTTOODOAAAAO MM ™
coogtaNaNNOoOococooNNNA
<t L0 ©

O O0OON-—AN-—TAMOOOOOONN

[Page 24]

I nf or mat i ona

Al akui j al a & Szabadka

RFC 7932

Lut

oo, bhOWWWNNNEI
oo hrhrbhbOOWWWNdNNE

oo hrhrbhbOOWWWNdNNE
oo hrhrbhbOOWWWNdNNE
oo hrhrbhbOOWWWNdNNE

UMM WWWWNNNE

Brotli

oo hrhr,bhbOOWWWNNNE
oo hrhr,bhbOOWWWNNNE
oo hrhr,bhbOOWWWNNNE
oo, bhOOWWWNDNNNE
OO RARDMBEDRNWWWWNNNE

July 2016

The | engths and the CRC-32 check val ues (see Appendi x C) of each of
these tables as a sequence of bytes are as foll ows:

LutO 256
Lutl 256
Lut2 256

0x8e9lef b7
0Oxd0l1la32f 4
0x0dd7a0d6

G ven pl is the last unconpressed byte and p2 is the second-to-| ast

unconpr essed by

For LSB6:
For MSB6:
For UTFS8:
For Si gned:

From the | ookup tabl es defi
the context | Ds, we can see that context

range of 0..63.

te, the context

Cont ext
Cont ext
Cont ext
Cont ext

D

D
D
D

pl & Ox3f
pl >> 2
Lut O[p1]

| Ds can be conputed as foll ows:

Lut 1[p2]

(Lut2[pl] << 3) | Lut2[p2]

ned above and the operations to conpute

IDs for literals are in the

The context nodes LSB6, MsSB6, UTF8, and Signed are denoted by

i ntegers 0, 1,

2, 3.

A context node is defined for each literal block type and they are
stored in a consecutive array of bits in the meta-bl ock header
always two bits per block type.

Al akui j al a & Szabadka

I nf or mat i ona

[Page 25]

RFC 7932 Brotli July 2016

7.2. Context ID for Distances

The context for encoding a distance code is defined by the copy
| ength corresponding to the distance. The context IDs are 0, 1, 2,
and 3 for copy lengths 2, 3, 4, and nore than 4, respectively.

7.3. Encoding of the Context Mp

There are two context maps, one for literals and one for distances.
The size of the context map is 64 * NBLTYPESL for literals, and 4 *
NBLTYPESD for di stances. Each value in the context map is an integer
between 0 and 255, indicating the index of the prefix code to be used
when encoding the next literal or distance.

The context maps are two-di mensional matrices, encoded as one-
di mensi onal arrays:

CMAPL[0. . (64 * NBLTYPESL - 1)]
CMAPD[0. . (4 * NBLTYPESD - 1)]

The index of the prefix code for encoding a literal or distance code
with bl ock type, BTYPE x, and context ID, CIDx, is:

i ndex of literal prefix code = CMAPL[64 * BTYPE L + Cl DL]
i ndex of distance prefix code = CMAPD[4 * BTYPE D + Cl DD

The val ues of the context map are encoded with the conbination of run
| ength encoding for zero values and prefix coding. Let RLEMAX denote
the nunber of run length codes and NTREES denote the maxi mum value in
the context map plus one. NTREES nust equal the nunber of different
values in the context nmap; in other words, the different values in
the context map nmust be the [0..NTREES-1] interval. The al phabet of
the prefix code has the followi ng RLEMAX + NTREES synbol s

0: value zero

1: repeat a zero 2 to 3 tinmes, read 1 bit for repeat length

2: repeat a zero 4 to 7 tines, read 2 bits for repeat |ength

RLEMAX: repeat a zero (1 << RLEMAX) to (1 << (RLEMAX+1))-1
times, read RLEMAX bits for repeat |ength

RLEMAX + 1: value 1

RLEMAX + NTREES - 1: val ue NTREES - 1

Al akui j al a & Szabadka I nf or mat i onal [Page 26]

RFC 7932 Brotli July 2016

If RLEMAX = 0, the run length coding is not used and the synbols of
the al phabet are directly the values in the context map. W can now
define the format of the context map (the same format is used for
literal and distance context maps):

1..5 bits: RLEMAX, 0 is encoded with one 0 bit, and values 1..16
are encoded with bit pattern xxxx1 (so 01001 is 5)

Prefix code with al phabet size NTREES + RLEMAX

Context map size val ues encoded with the above prefix code and run
| ength coding for zero values. |If a run length would result in
nore lengths in total than the size of the context map, then
the stream should be rejected as invalid.

1 bit: |IMFDbit, if set, we do an inverse nove-to-front transform
on the values in the context map to get the prefix code
i ndexes.

Note that RLEMAX may be |arger than the val ue necessary to represent
t he | ongest sequence of zero values. Also, the NTREES value is
encoded right before the context nmap as described in Section 9.2.

We define the inverse nove-to-front transformused in this
specification by the follow ng C | anguage function

voi d I nverseMoveToFront Transform(uint8_t* v, int v_len) {
uint8_ t ntf[256];

int i;

for (i =0; i < 256; ++i) {
nmfli] = (uint8_t)i;

for (i =0; i <v_len; ++i) {
uint8 t index = v[i];
uint8 t value = ntf[index];
v[i] = val ue;
for (; index; --index) {

nflindex] = mf[index - 1];

}
ntf[0] = val ue;

}

}

Note that the inverse nove-to-front transformwll not produce val ues
outside the [0..NTREES-1] interval

Al akui j al a & Szabadka I nf or mat i onal [Page 27]

RFC 7932 Brotli July 2016

8. Static Dictionary

At any given point during decoding the conpressed data, a reference
to a duplicated string in the unconpressed data produced so far has a
maxi mum backward di stance val ue, which is the m ni mum of the w ndow
size and the nunber of unconpressed bytes produced. However,
decodi ng a distance fromthe conpressed stream as described in
Section 4, can produce distances that are greater than this maxi num
allowed value. In this case, the distance is treated as a reference
to a wrd in the static dictionary given in Appendix A The copy
length for a static dictionary reference nust be between 4 and 24.
The static dictionary has three parts:

DI CT[0. . DI CTSI ZE], an array of bytes
DOFFSET[0..24], an array of byte-offset values for each length
* NDBI TS[0..24], an array of bit-depth values for each |l ength

The nunber of static dictionary words for a given length is:

NWORDS] | engt h]
NWORDSJ | engt h]

0 (if length < 4)
(1 << NDBITS[I ength]) (if length >= 4)

DOFFSET and DI CTSI ZE are defined by the follow ng recursion

DOFFSET[0] = 0
DOFFSET[| ength + 1] = DOFFSET[I ength] + length * NWORDS[| engt h]
DI CTSI ZE = DOFFSET[24] + 24 * NWORDS[24]

The offset of a word within the DICT array for a given | ength and
i ndex is:

of fset (I ength, index) = DOFFSET[l| ength] + index * length

Each static dictionary word has 121 different forms, given by

appl ying a word transformation to a base word in the DI CT array. The
list of word transformations is given in Appendix B. The static
dictionary word for a <length, distance> pair can be reconstructed as
fol | ows:

word_id = distance - (max allowed di stance + 1)

i ndex = word_id % NWORDS[| engt h]

base word = DI CT[of fset(length, index)..offset(length, index+1)-1]
transformid = word_id >> NDBITS[| engt h]

The string copied to the unconpressed streamis conputed by applying
the transformation to the base dictionary word. |If transformid is
greater than 120, or the length is smaller than 4 or greater than 24,
then the conpressed stream should be rejected as invalid.

Al akui j al a & Szabadka I nf or mat i onal [Page 28]

RFC 7932 Brotli July 2016

Each word transformation has the followi ng form
transformi (word) = prefix_i + T_i(word) + suffix_i

where the _i subscript denotes the transform.id above. Each T_i is
one of the followi ng 21 el enentary transforns:

Identity, FernentFirst, FermentAll
OmtFirstl, ..., OritFirst9, OmtLastl, ..., OnitlLast9

The form of these elenentary transforns is as follows:
Identity(word) = word
Fer ment Fi rst (word) = see bel ow

see bel ow

Fer ment Al | (wor d)

OmtFirstk(word) = the last (length(word) - k) bytes of word, or
enpty string if length(word) < k

Om tLastk(word) = the first (length(word) - k) bytes of word, or
enpty string if length(word) < k

Al akui j al a & Szabadka I nf or mat i onal [Page 29]

RFC 7932 Brotli July 2016

We define the FernentFirst and FernentAll transforns used in this
specification by the followi ng C |anguage functions:

int Fernent(uint8 t* word, int word_len, int pos) {
if (word[pos] < 192) {
if (word[pos] >= 97 and word[pos] <= 122) {
wor d[pos] = word[pos] " 32;

return 1;
} else if (word[pos] < 224) {
if (pos + 1 < word_len) {
word[pos + 1] = word[pos + 1] ~ 32;

return 2;
} else {
if (pos + 2 < word_len) {
word[pos + 2] = word[pos + 2] ~ 5;

return 3;

}

void FernentFirst(uint8 t* word, int word_len) {
if (word_len > 0) {
Fer ment (word, word |l en, 0);

}
}
void Fernment All (uint8_ t* word, int word_len) {
int i =0;
while (i < word_ len) {
i += Ferment(word, word len, i);
}
}

Appendi x B contains the list of transformations by specifying the
prefix, elenmentary transform and suffix conponents of each of them
Note that the OritFirst8 elenmentary transformis not used in the |ist
of transformations. The strings in Appendix B are in Cstring fornat
with respect to escape (backslash) characters.

The maxi mum nunber of additional bytes that a transformmay add to a
base word is 13. Since the |argest base word is 24 bytes long, a
buffer of 38 bytes is sufficient to store any transformed words
(counting a terminating zero byte).

Al akui j al a & Szabadka I nf or mat i onal [Page 30]

RFC 7932 Brotli July 2016

9. Conpressed Data For nat

In this section, we describe the format of the conpressed data set in
ternms of the format of the individual data itens described in the
previ ous sections.

9.1. Format of the Stream Header
The stream header has only the foll owi ng one field:

1..7 bits: WBITS, a value in the range 10..24, encoded with the
followi ng variable-length code (as it appears in the
conpressed data, where the bits are parsed fromright
to left):

Val ue Bit Pattern

10 0100001
11 0110001
12 1000001
13 1010001
14 1100001
15 1110001
16 0
17 0000001
18 0011
19 0101
20 0111
21 1001
22 1011
23 1101
24 1111

Note that bit pattern 0010001 is invalid and nust not
be used.

The size of the sliding window, which is the naxi nrum val ue of any
non-di ctionary reference backward distance, is given by the follow ng
fornmul a:

w ndow size = (1 << VBITS) - 16

Al akui j al a & Szabadka I nf or mat i onal [Page 31]

RFC 7932 Brotli July 2016

9.2. Format of the Meta-Bl ock Header

A conpliant conpressed data set has at |east one neta-block. Each
nmet a- bl ock contains a header with informati on about the unconpressed
I ength of the neta-block, and a bit signaling if the neta-block is
the | ast one. The format of the neta-block header is the foll ow ng:

1 bit: |ISLAST, set to 1 if this is the |ast neta-block

1 bit: |SLASTEMPTY, if set to 1, the meta-block is enpty; this
field is only present if |ISLAST bit is set -- if it is 1,
then the neta-block and the brotli streamends at that
bit, with any remaining bits in the |ast byte of the
conpressed streamfilled with zeros (if the fill bits are
not zero, then the stream should be rejected as invalid)

2 bits: MNIBBLES, nunber of nibbles to represent the unconpressed
| ength, encoded with the follow ng fixed-length code:

Val ue Bit Pattern
0 11
4 00
5 01
6 10

If MNIBBLES is 0, the neta-block is enpty, i.e., it does
not generate any unconpressed data. |In this case, the
rest of the neta-block has the foll owing format:

1 bit: reserved, nust be zero

2 bits: MSKIPBYTES, nunber of bytes to represent
nmet adata | engt h

MBKI PBYTES * 8 bits: MSKIPLEN - 1, where MSKIPLEN is
the nunber of netadata bytes; this field is
only present if MSKIPBYTES is positive;
otherwi se, MSKIPLEN is O (if MBSKIPBYTES is
greater than 1, and the last byte is al
zeros, then the stream should be rejected as
i nvalid)

0..7 bits: fill bits until the next byte boundary,
nmust be all zeros

MBKI PLEN byt es of netadata, not part of the
unconpressed data or the sliding w ndow

Al akui j al a & Szabadka I nf or mat i onal [Page 32]

RFC 7932 Brotli July 2016

WMNI BBLES * 4 bits: MLEN - 1, where MLEN is the | ength of the neta-
bl ock unconpressed data in bytes (if MNIBBLES is greater
than 4, and the last nibble is all zeros, then the stream
shoul d be rejected as invalid)

1 bit: |SUNCOWRESSED, if set to 1, any bits of conpressed data
up to the next byte boundary are ignored, and the rest of
the meta-bl ock contains MLEN bytes of literal data; this
field is only present if the I SLAST bit is not set (if the
ignored bits are not all zeros, the stream should be
rejected as invalid)

1..11 bits: NBLTYPESL, nunber of literal block types, encoded wth
the followi ng variable-length code (as it appears in the
conpressed data, where the bits are parsed fromright to
left, so 0110111 has the value 12):

Val ue Bit Pattern

1 0

2 0001
3..4 x0011
5..8 xx0101
9..16 xxx0111
17..32 Xxxxx1001
33..64 XXXXx1011
65..128 XXXXXX1101

129..256 xxxxxxx1111

Prefix code over the bl ock type code al phabet for literal block
types, appears only if NBLTYPESL >= 2

Prefix code over the block count code al phabet for litera
bl ock counts, appears only if NBLTYPESL >= 2

Bl ock count code + extra bits for first literal block count,
appears only if NBLTYPESL >= 2

1..11 bits: NBLTYPESI, nunber of insert-and-copy bl ock types,
encoded with the sane variabl e-1ength code as above

Prefix code over the bl ock type code al phabet for insert-and-
copy block types, appears only if NBLTYPESI >= 2

Prefix code over the bl ock count code al phabet for insert-and-
copy block counts, appears only if NBLTYPESI >= 2

Al akui j al a & Szabadka I nf or mat i onal [Page 33]

RFC 7932 Brotli July 2016
Bl ock count code + extra bits for first insert-and-copy bl ock
count, appears only if NBLTYPESI >= 2

1..11 bits: NBLTYPESD, nunber of distance block types, encoded
with the same variabl e-1ength code as above

Prefix code over the bl ock type code al phabet for distance
bl ock types, appears only if NBLTYPESD >= 2

Prefix code over the block count code al phabet for distance
bl ock counts, appears only if NBLTYPESD >= 2

Bl ock count code + extra bits for first distance bl ock count,
appears only if NBLTYPESD >= 2

2 bits: NPOSTFI X, paraneter used in the distance coding

4 bits: four nost significant bits of NDI RECT, to get the actua
val ue of the parameter NDI RECT, left-shift this four-bit
nurmber by NPOSTFI X bits

NBLTYPESL * 2 bits: context node for each literal block type

1..11 bits: NTREESL, nunber of literal prefix trees, encoded with
the sane vari abl e-1ength code as NBLTYPESL

Literal context map, encoded as described in Section 7.3,
appears only if NTREESL >= 2; otherw se, the context map has
only zero val ues

1..11 bits: NTREESD, nunber of distance prefix trees, encoded wth
the sane vari abl e-1ength code as NBLTYPESD

Di stance context map, encoded as described in Section 7.3,
appears only if NTREESD >= 2; otherw se, the context map has
only zero val ues

NTREESL prefix codes for literals
NBLTYPESI prefix codes for insert-and-copy |engths

NTREESD prefix codes for distances

Al akui j al a & Szabadka I nf or mat i onal [Page 34]

RFC 7932 Brotli July 2016

9.3. Format of the Meta-Bl ock Data

The conpressed data part of a neta-block consists of a series of
commands. Each command has the follow ng format:

Bl ock type code for next insert-and-copy block type, appears only
if NBLTYPESI >= 2 and the previous insert-and-copy bl ock count

is zero

Bl ock count code + extra bits for next insert-and-copy bl ock
count, appears only if NBLTYPESI >= 2 and the previous insert-
and- copy bl ock count is zero

I nsert-and-copy | ength, encoded as in Section 5, using the insert-
and-copy length prefix code with the current insert-and-copy
bl ock type index

Insert length nunber of literals, with the follow ng fornat:

Bl ock type code for next literal block type, appears only if
NBLTYPESL >= 2 and the previous literal block count is zero

Bl ock count code + extra bits for next literal block count,
appears only if NBLTYPESL >= 2 and the previous litera
bl ock count is zero

Next byte of the unconpressed data, encoded with the litera
prefix code with the index determ ned by the previous two
bytes of the unconpressed data, the current literal block
type, and the context nmap, as described in Section 7.3

Bl ock type code for next distance block type, appears only if
NBLTYPESD >= 2 and the previous distance block count is zero

Bl ock count code + extra bits for next distance bl ock count,
appears only if NBLTYPESD >= 2 and the previous distance bl ock
count is zero

Di stance code, encoded as in Section 4, using the distance prefix
code with the index deternined by the copy |ength, the current
di stance bl ock type, and the distance context map, as described
in Section 7.3, appears only if the distance code is not an
inmplicit 0, as indicated by the insert-and-copy |ength code

Al akui j al a & Szabadka I nf or mat i onal [Page 35]

RFC 7932 Brotli July 2016

The nunber of commands in the neta-block is such that the sumof the
unconpressed bytes produced (i.e., the nunber of literals inserted
pl us the nunber of bytes copied from past data or generated fromthe
static dictionary) over all the comuands gives the unconpressed

| ength, MLEN encoded in the neta-bl ock header

If the total nunber of unconpressed bytes produced after the insert
part of the last command equals MLEN, then the copy length of the

| ast command is ignored and will not produce any unconpressed output.
In this case, the copy length of the I ast command can have any val ue.
In any other case, if the nunber of literals to insert, the copy

Il ength, or the resulting dictionary word | ength would cause MLEN to
be exceeded, then the stream should be rejected as invalid.

If the last command of the |ast non-enpty neta-bl ock does not end on
a byte boundary, the unused bits in the |last byte nust be zeros.

10. Decoding Al gorithm

The decoding algorithmthat produces the unconpressed data is as
fol | ows:

read wi ndow si ze
do
read | SLAST bit
i f | SLAST
read | SLASTEMPTY bi t
i f | SLASTEMPTY
break from | oop
read MNI BBLES
if MNIBBLES is zero
verify reserved bit is zero
read NMSKI PLEN
skip any bits up to the next byte boundary
ski p MSKI PLEN byt es
continue to the next neta-bl ock
el se
read MLEN
if not | SLAST
read | SUNCOVPRESSED bi t
i f | SUNCOVPRESSED
skip any bits up to the next byte boundary
copy M.EN bytes of conpressed data as literals
continue to the next neta-block

Al akui j al a & Szabadka I nf or mat i onal [Page 36]

RFC 7932 Brotli July 2016

| oop for each three bl ock categories (i =L, |, D)
read NBLTYPESI
if NBLTYPESI >= 2
read prefix code for block types, HTREE BTYPE i
read prefix code for block counts, HTREE BLEN i
read bl ock count, BLEN. i
set block type, BTYPE i to O
initialize second-to-last and |last block types to 0 and 1
el se
set bl ock type, BTYPE i to O
set block count, BLEN i to 16777216
read NPOSTFI X and NDI RECT
read array of literal context nodes, CMODE|]
read NTREESL
if NTREESL >= 2
read literal context map, CMAPL[]
el se
fill CVAPL[] with zeros
read NTREESD
i f NTREESD >= 2
read di stance context map, CVAPD[]
el se
fill CVAPD[] with zeros
read array of literal prefix codes, HTREEL[]
read array of insert-and-copy length prefix codes, HTREEI[]
read array of distance prefix codes, HTREED]
do
if BLEN | is zero
read bl ock type using HTREE BTYPE | and set BTYPE_I
save previous bl ock type
read bl ock count using HTREE BLEN | and set BLEN |
decrement BLEN |
read insert-and-copy |ength symbol using HTREEI [BTYPE I]
conmpute insert length, ILEN, and copy |ength, CLEN
| oop for ILEN
if BLEN L is zero
read bl ock type using HTREE BTYPE L and set BTYPE L
save previous bl ock type
read bl ock count using HTREE_BLEN L and set BLEN L
decrenent BLEN L
| ook up context node CMODE[BTYPE L]
conpute context ID, CIDL fromlast two unconpressed bytes
read literal using HTREEL[CMAPL[64*BTYPE L + CI DL]]
wite literal to unconpressed stream
i f nunber of unconpressed bytes produced in the loop for
this meta-block is MLEN, then break fromloop (in this
case the copy length is ignored and can have any val ue)

Al akui j al a & Szabadka I nf or mat i onal [Page 37]

RFC 7932 Brotli July 2016

11.

if distance code is inplicit zero frominsert-and-copy code
set backward distance to the |ast distance
el se
if BLEN D is zero
read bl ock type using HTREE BTYPE_D and set BTYPE_D
save previous bl ock type
read bl ock count using HTREE BLEN D and set BLEN D
decrement BLEN D
conmpute context I D, CIDD from CLEN
read di stance code usi ng HTREED] CMAPD] 4*BTYPE D + Cl DD]]
conmput e di stance by di stance short code substitution
i f distance code is not zero,
and distance is not a static dictionary reference,
push distance to the ring buffer of |ast distances
if distance is less than the max all owed di stance pl us one
nmove backwards di stance bytes in the unconpressed data,
and copy CLEN bytes fromthis position to
t he unconpressed stream
el se
ook up the static dictionary word, transformthe word as
directed, and copy the result to the unconpressed stream
whi | e nunber of unconpressed bytes for this neta-block < M_LEN
whi |l e not | SLAST

If the stream ends before the conpletion of the | ast neta-bl ock, then
the stream should be rejected as invalid.

Note that a duplicated string reference may refer to a string in a
previ ous neta-block, i.e., the backward di stance nay cross one or
nore neta-bl ock boundaries. However, a backward copy distance wll
not refer past the begi nning of the unconpressed stream or the w ndow
size; any such distance is interpreted as a reference to a static
dictionary word. Also, note that the referenced string nmay overlap
the current position, for exanple, if the last 2 bytes decoded have
values X and Y, a string reference with <length =5, distance = 2>
adds X, VY, X, Y, X to the unconpressed stream

Consi derati ons for Conpressor |nplenentations

Since the intent of this document is to define the brotli conpressed
data format without reference to any particul ar conpression
algorithm the material in this section is not part of the definition
of the format, and a conpressor need not followit in order to be
conpliant.

Al akui j al a & Szabadka I nf or mat i onal [Page 38]

RFC 7932 Brotli July 2016

11.1. Trivial Conpressor

In this section, we present a very sinple algorithmthat produces a
valid brotli streamrepresenting an arbitrary sequence of
unconpressed bytes in the formof the foll ow ng C++ | anguage

functi on.

string Brotli ConpressTrivial (const string& u) {

if (u.emty()) {
return string(1, 6);
}

int i;
string c;
c.append(1, 12);
for (i = 0; i + 65535 < u.size(); i += 65536) {
c.append(1, 248);
c. append(1, 255);
c.append(1, 15);
c.append(&u[i], 65536);

}

if (i <u.size()) {
int r =u.size() - i - 1;
c.append(1, (r & 31) << 3);
c.append(1l, r >> 5);
c.append(1l, 8 + (r >> 13));
c.append(&u[i], r + 1);

}
c.append(1, 3);
return c;

}

Note that this sinple algorithmdoes not actually conpress data, that
is, the brotli representation will always be bigger than the
original, but it shows that every sequence of N unconpressed bytes
can be represented with a valid brotli streamthat is not |onger than
N+ (3* (N> 16) + 5) bytes.

11.2. Aligning Conpressed Meta-Bl ocks to Byte Boundaries

As described in Section 9, only those neta-blocks that inmediately
foll ow an unconpressed neta-bl ock or a netadata neta-bl ock are
guaranteed to start on a byte boundary. 1In sone applications, it

m ght be required that every non-netadata neta-block starts on a byte
boundary. This can be achi eved by appending an enpty netadata neta-
bl ock after every non-nmetadata neta-block that does not end on a byte
boundary.

Al akui j al a & Szabadka I nf or mat i onal [Page 39]

RFC 7932 Brotli July 2016

11.3. Creating Self-Contained Parts within the Conpressed Data

In sone encoder inplenentations, it mght be required to nake a
sequence of bytes within a brotli stream sel f-contained, that is,
such that they can be deconpressed i ndependently from previous parts
of the conpressed data. This is a useful feature for three reasons.
First, if a large conpressed file is damaged, it is possible to
recover sone of the file after the damage. Second, it is useful when
doing differential transfer of conpressed data. |f a sequence of
unconpressed bytes is unchanged and conpressed i ndependently from
previ ous data, then the conpressed representation nmay al so be
unchanged and can therefore be transferred very cheaply. Third, if
sequences of unconpressed bytes are conpressed i ndependently, it

all ows for parallel conpression of these byte sequences within the
sane file, in addition to parallel conpression of nultiple files.

G ven two sequences of unconpressed bytes, U0 and Ul, we will now
describe how to create two sequences of conpressed bytes, C0 and Ci,
such that the concatenation of G0 and Cl is a valid brotli stream
and that C0 and ClL (together with the first byte of CO that contains
the wi ndow si ze) can be deconpressed i ndependently from each other to
U0 and UL.

When conpressing the byte sequence U0 to produce CO, we can use any
conpressor that works on the conplete set of unconpressed bytes U0,
with the following two changes. First, the | SLAST bit of the |ast
nmet a- bl ock of CO nust not be set. Second, Q0 nust end at a byte-
boundary, which can be ensured by appending an enpty netadata neta-
block to it, as in Section 11.2.

When conpressing the byte sequence Ul to produce Cl, we can use any
conpressor that starts a new nmeta-block at the beginning of Ul within
the UO+Ul input stream with the follow ng two changes. First,
backward distances in Cl nust not refer to static dictionary words or
unconpressed bytes in U0. Even if a sequence of bytes in Ul would
match a static dictionary word, or a sequence of bytes that overl aps
U0, the conpressor nust represent this sequence of bytes with a
conbination of literal insertions and backward references to bytes in
Ul instead. Second, the ring buffer of last four distances nust be
repl enished first with distances in Cl before using it to encode
other distances in Cl. Note that both conmpressors produci ng CO and
Cl have to use the same wi ndow size, but the stream header is enitted
only by the conpressor that produces 0.

Note that this nmethod can be easily generalized to nore than two
sequences of unconpressed bytes.

Al akui j al a & Szabadka I nf or mat i onal [Page 40]

RFC 7932 Brotli July 2016

12. Security Considerations

As with any conpressed file formats, deconpressor inplenmentations
shoul d handl e all conpressed data byte sequences, not only those that
conformto this specification, where non-conformant conpressed data
sequences shoul d be rejected as invalid.

A possi bl e attack against a system contai ning a deconpressor

i mpl ementation (e.g., a web browser) is to exploit a buffer overfl ow
triggered by invalid conpressed data. Therefore, deconpressor

i npl enent ati ons shoul d perform bounds-checking for each nenory access
that result from val ues decoded fromthe conpressed stream and
derivatives thereof.

Anot her possible attack agai nst a system contai ning a deconpressor

i npl ementation is to provide it (either valid or invalid) conpressed
data that can nake the deconpressor systen s resource consunption
(CPU, nenory, or storage) to be disproportionately |arge conpared to
the size of the conpressed data. In addition to the size of the
conpressed data, the anobunt of CPU, nenory, and storage required to
deconpress a single conpressed neta-block within a brotli streamis
controlled by the follow ng two paraneters: the size of the

unconpr essed neta-bl ock, which is encoded at the start of the
conpressed neta-block, and the size of the sliding window, which is
encoded at the start of the brotli stream Deconpressor

i mpl ementations in systenms where nenory or storage is constrained
shoul d perform a sanity-check on these two paraneters. The
unconpressed neta-bl ock size that was decoded fromthe conpressed
stream shoul d be conpared against either a hard limt, given by the
systenis constraints or sone expectation about the unconpressed data,
or against a certain nmultiple of the size of the conpressed data. |If
t he unconpressed neta-bl ock size is deternmined to be too high, the
conpressed data should be rejected. Likew se, when the conplete
unconpressed streamis kept in the system containing the deconpressor
i npl ementation, the total unconpressed size of the stream should be
checked before deconpressing each additional neta-block. |If the size
of the sliding window that was decoded fromthe start of the
conpressed streamis greater than a certain soft linit, then the
deconpressor inplenmentation should, at first, allocate a smaller
sliding window that fits the first unconpressed neta-bl ock, and

aft erwards, before deconpressing each additional neta-block, it
shoul d i ncrease the size of the sliding window until the sliding

wi ndow si ze specified in the conpressed data is reached

Al akui j al a & Szabadka I nf or mat i onal [Page 41]

RFC 7932 Brotli July 2016

Correspondi ngly, possible attacks against a systemcontaining a
conpressor inplenentation (e.g., a web server) are to exploit a
buffer overflow or cause disproportionately |arge resource
consunption by providing, e.g., unconpressible data. As described in
Section 11.1