I nt ernet Engi neering Task Force (I ETF) B. Hal evy

Request for Comments: 8435

Cat egory: Standards Track T. Haynes

I SSN: 2070-1721 Hamrer space
August 2018

Parall el NFS (pNFS) Flexible File Layout
Abstr act

Paral l el NFS (pNFS) allows a separation between the netadata (onto a
net adata server) and data (onto a storage device) for a file. The
flexible file layout type is defined in this document as an extension
to pNFS that allows the use of storage devices that require only a
limted degree of interaction with the netadata server and use

al ready-existing protocols. dient-side nmrroring is also added to
provide replication of files.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
https://ww. rfc-editor.org/info/rfc8435

Copyright Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Hal evy & Haynes St andards Track [Page 1]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

Tabl e

1

o N

10.
11.
12.

13.

of Contents
Introducti On 3
1.1, Definitions ... 4
1.2. Requirenents Language 6
Coupling of Storage DeviCes 6
2.1, LAYOUTCOMM T .ottt e e e e e e e e e 7
2.2. Fencing Cients fromthe Storage Device 7
2.2.1. Inplenentation Notes for Synthetic uids/gids 8
2.2.2. Exanmple of Using Synthetic uids/gids 9
2.3. State and Locking Models 10
2.3.1. Loosely Coupled Locking Model 11
2.3.2. Tightly Coupled Locking Moudel 12
XDR Description of the Flexible File Layout Type 13
3.1. Code Components Licensing Notice 14
Devi ce Addressing and Di SCOVErY 16
4.1, ff _device addrd 16
4.2. Storage Device Miultipathing 17
Flexible File Layout Type e 18
5.1, ff _layoutd ... 19
5.1.1. Error Codes from LAYOUTGET 23
5.1.2. dient Interactions with FF_FLAGS NO IO THRU MDS ... 23
5.2, LAYOUTCOMM T .ot e e e e e e 24
5.3. Interactions between Devices and Layouts 24
5.4. Handling Version Errors 24
Striping via Sparse Mapping 25
Recovering fromdient [/OErrors 25
M P rOr I NG . 26
8.1. Selecting a Mrror e 26
8.2, Witing to MrIrors ... e e e e 27
8.2.1. Single Storage Device Updates Mrrors 27
8.2.2. Cient Updates Al Mrrors, 27
8.2.3. Handling Wite Errors 28
8.2.4. Handling Wite COMTS 28
8.3. Metadata Server Resilvering of the File 29
Flexible File Layout Type Return 29
9.1. I/OError RepOrtingo e e 30
9. 1. 1. ff i 0errd . 30
9.2. Layout Usage StatisticCS 31
9.2.1. ff_io_latencyd 31
9.2.2. ff_layoutupdated 32
9.2.3. ff iostatsd e 33
9.3. ff _layoutreturnd 34
Fl exi ble File Layout Type LAYOUTERROR 35
Fl exi ble File Layout Type LAYOUTSTATS 35
Flexible File Layout Type Creation Hnt 35
12.1. ff _layouthintd 35
Recal ling a Layout e 36

Hal evy & Haynes St andards Track [Page 2]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

13. 1. CB RECALL _ANY ... e e e e 36
14, Adient FEeNCing e e 37
15. Security Considerati ONsS 37

15.1. RPCSEC GSS and Security ServicCesuiiiuiaenn. 39

15.1.1. Loosely Coupled 39
15.1.2. Tightly Coupled 39
16. TANA Considerati ONSo i e e 39
7. Ref Br BNCES . . o o e 40

17.1. Normative Ref erences i i 40

17.2. Informative References i, 41
ACKNOW edgmENt S 42
AUt hor S’ Addr €SSES . . .t i 42

1. Introduction

In Parallel NFS (pNFS), the nmetadata server returns |ayout type
structures that describe where file data is |located. There are
different |layout types for different storage systens and net hods of
arrangi ng data on storage devices. This docunment defines the
flexible file layout type used with fil e-based data servers that are
accessed using the NFS protocols: NFSv3 [RFC1813], NFSv4.0 [RFC7530],
NFSv4.1 [RFC5661], and NFSv4.2 [RFC7862].

To provide a global state nodel equivalent to that of the files

| ayout type, a back-end control protocol m ght be inplenmented between
the metadata server and NFSv4. 1+ storage devices. An inplementation
can either define its own proprietary nechanismor it could define a
control protocol in a Standards Track docunment. The requirenments for
a control protocol are specified in [RFC5661] and clarified in

[RFC8434] .

The control protocol described in this docunment is based on NFS. It
does not provide for know edge of stateids to be passed between the
nmet adata server and the storage devices. |Instead, the storage

devices are configured such that the nmetadata server has full access
rights to the data file systemand then the netadata server uses
synthetic ids to control client access to individual files.

In traditional mirroring of data, the server is responsible for
replicating, validating, and repairing copies of the data file. Wth
client-side mrroring, the netadata server provides a |ayout that
presents the available nmirrors to the client. The client then picks
amrror to read fromand ensures that all wites go to all mrrors.
The client only considers the wite transaction to have succeeded if
all mirrors are successfully updated. |In case of error, the client
can use the LAYOUTERRCOR operation to informthe netadata server,
which is then responsible for the repairing of the mrrored copies of
the file.

Hal evy & Haynes St andards Track [Page 3]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

1.1. Definitions

control conmunication requirements: the specification for
i nformati on on | ayouts, stateids, file netadata, and file data
that nmust be comuni cated between the netadata server and the
storage devices. There is a separate set of requirenments for each
| ayout type.

control protocol: the particular nmechanismthat an inplenmentation of
a layout type would use to neet the control conmunication
requirenent for that |ayout type. This need not be a protocol as
normal Iy understood. In sone cases, the sane protocol nmay be used
as a control protocol and storage protocol.

client-side mrroring: a feature in which the client, not the
server, is responsible for updating all of the mirrored copies of
a | ayout segnent.

(file) data: that part of the file system object that contains the
data to be read or witten. It is the contents of the object
rather than the attributes of the object.

data server (DS): a pNFS server that provides the file s data when
the file systemobject is accessed over a fil e-based protocol

fencing: the process by which the netadata server prevents the
storage devices fromprocessing |/O froma specific client to a
specific file.

file layout type: a layout type in which the storage devices are
accessed via the NFS protocol (see Section 13 of [RFC5661]).

gid: the group id, a nunmeric value that identifies to which group a
file bel ongs.

layout: the information a client uses to access file data on a
storage device. This information includes specification of the
protocol (layout type) and the identity of the storage devices to
be used.

| ayout ionmpde: a grant of either read-only or read/wite I/Oto the
client.

| ayout segnent: a sub-division of a layout. That sub-division mght
be by the layout ionode (see Sections 3.3.20 and 12.2.9 of
[RFC5661]), a striping pattern (see Section 13.3 of [RFC5661]), or
requested byte range.

Hal evy & Haynes St andards Track [Page 4]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

| ayout stateid: a 128-bit quantity returned by a server that
uni quely defines the | ayout state provided by the server for a
specific layout that describes a layout type and file (see
Section 12.5.2 of [RFC5661]). Further, Section 12.5.3 of
[RFC5661] describes differences in handling between | ayout
statei ds and other stateid types.

| ayout type: a specification of both the storage protocol used to
access the data and the aggregati on schene used to lay out the
file data on the underlying storage devices.

| oose coupling: when the control protocol is a storage protocol

(file) netadata: the part of the file system object that contains
various descriptive data relevant to the file object, as opposed
to the file data itself. This could include the tinme of |ast
nmodi fi cation, access tinme, EOF position, etc.

nmet adata server (MDS): the pNFS server that provides netadata
information for a file systemobject. It is also responsible for
generating, recalling, and revoking layouts for file system
objects, for performng directory operations, and for performnng
I/ O operations to regular files when the clients direct these to
the nmetadata server itself.

mrror: a copy of a layout segnent. Note that if one copy of the
mrror is updated, then all copies nmust be updated.

recalling a layout: a graceful recall, via a callback, of a specific
| ayout by the netadata server to the client. G aceful here neans
that the client would have the opportunity to flush any WRI TEs,
etc., before returning the |ayout to the nmetadata server

revoking a layout: an invalidation of a specific |layout by the
met adata server. Once revocation occurs, the netadata server wll
not accept as valid any reference to the revoked | ayout, and a
storage device will not accept any client access based on the
| ayout .

resilvering: the act of rebuilding a mrrored copy of a |ayout
segnment from a known good copy of the |ayout segnent. Note that
this can also be done to create a new mrrored copy of the |ayout
segment .

rsize: the data transfer buffer size used for READs.

Hal evy & Haynes St andards Track [Page 5]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

stateid: a 128-bit quantity returned by a server that uniquely
defines the set of |ocking-related state provided by the server
Stateids nay designate state related to open files, byte-range
| ocks, del egations, or |ayouts.

storage device: the target to which clients may direct I/0O requests
when they hold an appropriate |ayout. See Section 2.1 of
[RFC8434] for further discussion of the difference between a data
server and a storage device

storage protocol: the protocol used by clients to do I/O operations
to the storage device. Each |ayout type specifies the set of
storage protocols.

tight coupling: an arrangenment in which the control protocol is one
designed specifically for control comrunication. It may be either
a proprietary protocol adapted specifically to a particul ar
nmet adata server or a protocol based on a Standards Track docunent.

uid: the user id, a nuneric value that identifies which user owns a
file.

wsi ze: the data transfer buffer size used for WR TEs.
1.2. Requirenments Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in
BCP 14 [RFC2119] [RFCB174] when, and only when, they appear in al
capitals, as shown here

2. Coupling of Storage Devices

A server inplenentation nmay choose either a | oosely coupled nodel or
a tightly coupl ed nodel between the netadata server and the storage
devices. [RFC8434] describes the general problens facing pNFS

i mpl enentations. This docunent details how the new flexible file

| ayout type addresses these issues. To inplenent the tightly coupled
nmodel , a control protocol has to be defined. As the flexible file

| ayout inposes no special requirenents on the client, the contro
protocol will need to provide:

(1) managenent of both security and LAYOUTCOW Ts and

(2) a global stateid nodel and managenent of these stateids.

Hal evy & Haynes St andards Track [Page 6]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

When i npl enenting the | oosely coupled nodel, the only contro
protocol will be a version of NFS, with no ability to provide a
gl obal stateid nodel or to prevent clients fromusing | ayouts

i nappropriately. To enable client use in that environnent, this
docunent will specify how security, state, and |ocking are to be
managed.

2.1. LAYQUTCOW T

Regardl ess of the coupling nodel, the netadata server has the
responsi bility, upon receiving a LAYQUTCOW T (see Section 18.42 of

[RFC5661]) to ensure that the semantics of pNFS are respected (see
Section 3.1 of [RFC8434]). These do include a requirenent that data
witten to a data storage device be stable before the occurrence of
t he LAYOUTCOWM T.

It is the responsibility of the client to nake sure the data file is
stabl e before the netadata server begins to query the storage devices
about the changes to the file. If any WRITE to a storage device did
not result with stable how equal to FILE SYNC, a LAYOQUTCOWM T to the
nmet adat a server MJST be preceded by a COM T to the storage devices
witten to. Note that if the client has not done a COM T to the
storage device, then the LAYOQUTCOWM T mi ght not be synchronized to
the I ast WRI TE operation to the storage device.

2.2. Fencing dients fromthe Storage Device

Wth | oosely coupl ed storage devices, the netadata server uses
synthetic uids (user ids) and gids (group ids) for the data file,
where the uid owner of the data file is allowed read/wite access and
the gid owner is allowed read-only access. As part of the |ayout
(see ffds user and ffds _group in Section 5.1), the client is provided
with the user and group to be used in the Renote Procedure Call (RPC)
[RFC5531] credentials needed to access the data file. Fencing off of
clients is achieved by the netadata server changing the synthetic uid
and/ or gid owners of the data file on the storage device to
inmplicitly revoke the outstanding RPC credentials. A client
presenting the wong credential for the desired access will get an
NFS4ERR_ACCESS err or

Wth this | oosely coupled nodel, the netadata server is not able to
fence off a single client; it is forced to fence off all clients.
However, as the other clients react to the fencing, returning their
| ayouts and trying to get new ones, the netadata server can hand out
a new uid and gid to all ow access

Hal evy & Haynes St andards Track [Page 7]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

It is RECOWENDED to inplenent combn access control nethods at the
storage device file systemto allow only the nmetadata server root
(super user) access to the storage device and to set the owner of all
directories holding data files to the root user. This approach
provides a practical nodel to enforce access control and fence off
cooperative clients, but it cannot protect against nalicious clients;
hence, it provides a |l evel of security equivalent to AUTH SYS. It is
RECOMVENDED t hat t he communi cati on between the netadata server and
storage devi ce be secure from eavesdroppers and nan-in-the-niddle
protocol tanpering. The security nmeasure could be physical security
(e.g., the servers are co-located in a physically secure area),
encrypted conmuni cations, or sone other technique.

Wth tightly coupl ed storage devices, the netadata server sets the
user and group owners, node bits, and Access Control List (ACL) of
the data file to be the same as the netadata file. And the client
must authenticate with the storage device and go through the same
aut hori zation process it would go through via the netadata server.
In the case of tight coupling, fencing is the responsibility of the
control protocol and is not described in detail in this docunent.
However, inplenmentations of the tightly coupl ed | ocking nodel (see
Section 2.3) will need a way to prevent access by certain clients to
specific files by invalidating the corresponding stateids on the
storage device. In such a scenario, the client will be given an
error of NFS4ERR BAD STATEI D.

The client need not know the nodel used between the netadata server
and the storage device. It need only react consistently to any
errors in interacting with the storage device. It should both return
the layout and error to the netadata server and ask for a new | ayout.
At that point, the netadata server can either hand out a new | ayout,
hand out no layout (forcing the I/Othrough it), or deny the client
further access to the file.

2.2.1. Inplenentation Notes for Synthetic uids/gids

The selection nethod for the synthetic uids and gids to be used for
fencing in | oosely coupled storage devices is strictly an

i mpl erentation issue. That is, an adnministrator nmight restrict a
range of such ids available to the Lightweight Directory Access
Protocol (LDAP) 'uid field [RFC4519]. The administrator mght al so
be able to choose an id that would never be used to grant access.
Then, when the netadata server had a request to access a file, a
SETATTR woul d be sent to the storage device to set the owner and
group of the data file. The user and group mnmight be selected in a
round-robin fashion fromthe range of available ids.

Hal evy & Haynes St andards Track [Page 8]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

2.

2.

Those ids would be sent back as ffds user and ffds_group to the
client, who would present themas the RPC credentials to the storage
device. Wien the client is done accessing the file and the netadata
server knows that no other client is accessing the file, it can reset
the owner and group to restrict access to the data file.

When the netadata server wants to fence off a client, it changes the
synthetic uid and/or gid to the restricted ids. Note that using a
restricted id ensures that there is a change of owner and at |east
one id available that never gets all owed access.

Under an AUTH SYS security nodel, synthetic uids and gids of 0 SHOULD
be avoided. These typically either grant super access to files on a

storage device or are nmapped to an anonynous id. |In the first case,
even if the data file is fenced, the client mght still be able to
access the file. 1In the second case, nultiple ids night be mapped to

t he anonynous i ds.
2. Exanple of Using Synthetic uids/gids

The user loghyr creates a file "onpha.c" on the netadata server
whi ch then creates a corresponding data file on the storage device.

The netadata server entry may | ook |ike:
STWr--r1-- 1 |l oghyr staff 1697 Dec 4 11:31 onpha.c

On the storage device, the file may be assigned sonme unpredictable
synthetic uid/gid to deny access:

STWr----- 1 19452 28418 1697 Dec 4 11:31 data_onpha.c

Wien the file is opened on a client and accessed, the user will try
to get a layout for the data file. Since the |ayout knows not hi ng
about the user (and does not care), it does not matter whether the
user | oghyr or garbo opens the file. The client has to present an
uid of 19452 to get wite pernmission. |If it presents any other val ue
for the uid, then it nust give a gid of 28418 to get read access.

Further, if the netadata server decides to fence the file, it should
change the uid and/or gid such that these val ues neither match
earlier values for that file nor match a predictabl e change based on
an earlier fencing.

SPWF----- 1 19453 28419 1697 Dec 4 11:31 data_onmpha.c

Hal evy & Haynes St andards Track [Page 9]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

The set of synthetic gids on the storage device should be sel ected
such that there is no nmapping in any of the name services used by the
storage device, i.e., each group should have no nenbers

If the layout segnment has an ionode of LAYQUTI OMODE4_READ, then the
nmet adata server should return a synthetic uid that is not set on the
storage device. Only the synthetic gid would be valid.

The client is thus solely responsible for enforcing file permi ssions
in a loosely coupled nmodel. To allow |loghyr wite access, it wll
send an RPC to the storage device with a credential of 1066:1067. To
al | ow garbo read access, it will send an RPC to the storage device
with a credential of 1067:1067. The value of the uid does not matter
as long as it is not the synthetic uid granted when getting the

| ayout .

VWhi | e pushing the enforcement of perm ssion checking onto the client
may seemto weaken security, the client nay already be responsible
for enforcing perm ssions before nodifications are sent to a server
Wth cached wites, the client is always responsible for tracking who
is nodifying a file and making sure to not coal esce requests from
multiple users into one request.

2.3. State and Locki ng Model s

An i mpl enentation can al ways be deployed as a | oosely coupl ed nodel .
There is, however, no way for a storage device to indicate over an
NFS protocol that it can definitively participate in a tightly
coupl ed nodel :

0 Storage devices inplenmenting the NFSv3 and NFSv4.0 protocols are
al ways treated as | oosely coupl ed.

0 NFSv4. 1+ storage devices that do not return the
EXCHG D4_FLAG USE PNFS DS flag set to EXCHANGE I D are indicating
that they are to be treated as | oosely coupled. Fromthe |ocking
viewpoint, they are treated in the sane way as NFSv4. 0 storage
devi ces.

0 NFSv4. 1+ storage devices that do identify thenselves with the
EXCHG D4_FLAG USE PNFS DS flag set to EXCHANGE I D can potentially
be tightly coupled. They would use a back-end control protocol to
i mpl enent the gl obal stateid nodel as described in [RFC5661].

A storage device would have to be either discovered or advertised
over the control protocol to enable a tightly coupl ed nodel

Hal evy & Haynes St andards Track [Page 10]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

2.3.1. Loosely Coupl ed Locking Mode

When | ocking-rel ated operations are requested, they are primarily
dealt with by the nmetadata server, which generates the appropriate
stateids. When an NFSv4 version is used as the data access protocol
the netadata server nmay nake stateid-related requests of the storage
devices. However, it is not required to do so, and the resulting
stateids are known only to the netadata server and the storage

devi ce.

G ven this basic structure, |ocking-related operations are handl ed as
fol | ows:

0 OPENs are dealt with by the nmetadata server. Stateids are
sel ected by the nmetadata server and associated with the client ID
describing the client’s connection to the nmetadata server. The
nmet adata server may need to interact with the storage device to
| ocate the file to be opened, but no |ocking-related functionality
need be used on the storage device.

OPEN_DOWNGRADE and CLOSE only require | ocal execution on the
net adat a server.

0 Advisory byte-range | ocks can be inplenmented locally on the
nmet adata server. As in the case of OPENs, the stateids associated
with byte-range | ocks are assigned by the netadata server and only
used on the netadata server

0 Delegations are assigned by the netadata server that initiates
recall s when conflicting OPENs are processed. No storage device
i nvol venent is required

0 TEST_STATEI D and FREE_STATEI D are processed locally on the
nmet adata server, w thout storage device involvenent.

Al 1/0O operations to the storage device are done using the anonynous
stateid. Thus, the storage device has no information about the
openowner and | ockowner responsible for issuing a particular I/0
operation. As a result:

o Mandatory byte-range | ocking cannot be supported because the
storage device has no way of distinguishing I/O done on behal f of
the | ock owner fromthose done by others.

o Enforcenent of share reservations is the responsibility of the
client. Even though I/O is done using the anonynous stateid, the
client nust ensure that it has a valid stateid associated with the
openowner .

Hal evy & Haynes St andards Track [Page 11]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

In the event that a stateid is revoked, the netadata server is
responsi ble for preventing client access, since it has no way of
being sure that the client is aware that the stateid in question has
been revoked.

As the client never receives a stateid generated by a storage device,
there is no client | ease on the storage device and no prospect of

| ease expiration, even when access is via NFSv4 protocols. dients
will have | eases on the netadata server. |In dealing with |ease
expiration, the nmetadata server may need to use fencing to prevent
revoked stateids frombeing relied upon by a client unaware of the
fact that they have been revoked.

2.3.2. Tightly Coupl ed Locki ng Mdel

When | ocki ng-rel ated operations are requested, they are primarily
dealt with by the metadata server, which generates the appropriate
stateids. These stateids nust be nade known to the storage device
using control protocol facilities, the details of which are not

di scussed in this docunent.

G ven this basic structure, |ocking-related operations are handl ed as
fol | ows:

0 OPENs are dealt with primarily on the netadata server. Stateids
are selected by the netadata server and associated with the client
I D describing the client’s connection to the netadata server. The
nmet adata server needs to interact with the storage device to
|l ocate the file to be opened and to nake the storage device aware
of the association between the netadata-server-chosen stateid and
the client and openowner that it represents.

OPEN_DOANCGRADE and CLOSE are executed initially on the netadata
server, but the state change nmade nust be propagated to the
st orage device

0 Advisory byte-range | ocks can be inplemented locally on the
net adata server. As in the case of OPENs, the stateids associated
with byte-range | ocks are assigned by the netadata server and are
avail abl e for use on the netadata server. Because I/O operations
are allowed to present |ock stateids, the netadata server needs
the ability to nake the storage device aware of the association
bet ween the netadat a- server-chosen stateid and the correspondi ng
open stateid it is associated wth.

o Mandatory byte-range | ocks can be supported when both the netadata

server and the storage devices have the appropriate support. As
in the case of advisory byte-range | ocks, these are assigned by

Hal evy & Haynes St andards Track [Page 12]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

the metadata server and are avail able for use on the netadata
server. To enable mandatory | ock enforcenent on the storage
device, the netadata server needs the ability to nmake the storage
devi ce aware of the association between the netadata-server-chosen
stateid and the client, openowner, and |lock (i.e., |ockowner
byte-range, and | ock-type) that it represents. Because |/O
operations are allowed to present |ock stateids, this infornation
needs to be propagated to all storage devices to which I/O m ght
be directed rather than only to storage device that contain the

| ocked region.

0 Delegations are assigned by the netadata server that initiates
recal s when conflicting OPENs are processed. Because |/0O
operations are allowed to present del egation stateids, the
net adata server requires the ability (1) to nake the storage
devi ce aware of the association between the netadata-server-chosen
stateid and the fil ehandl e and del egation type it represents and
(2) to break such an association

0 TEST_STATEID is processed locally on the netadata server, without
st orage device invol venent.

0 FREE_STATEID is processed on the netadata server, but the netadata
server requires the ability to propagate the request to the
correspondi ng storage devices.

Because the client will possess and use stateids valid on the storage
device, there will be a client | ease on the storage device, and the
possibility of |ease expiration does exist. The best approach for
the storage device is to retain these | ocks as a courtesy. However,
if it does not do so, control protocol facilities need to provide the
means to synchroni ze | ock state between the netadata server and
storage device

Clients will also have | eases on the netadata server that are subject

to expiration. In dealing with | ease expiration, the netadata server
woul d be expected to use control protocol facilities enabling it to
i nval i date revoked stateids on the storage device. 1In the event the

client is not responsive, the netadata server nmay need to use fencing
to prevent revoked stateids from being acted upon by the storage
devi ce.

3. XDR Description of the Flexible File Layout Type
Thi s docunent contains the External Data Representation (XDR)
[RFCA506] description of the flexible file layout type. The XDR

description is enbedded in this docunent in a way that nakes it
sinmple for the reader to extract into a ready-to-conpile form The

Hal evy & Haynes St andards Track [Page 13]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

reader can feed this docunent into the follow ng shell script to
produce t he machi ne-readabl e XDR description of the flexible file
| ayout type:

<CODE BEG NS>

#!/bin/sh
grep "N *[/]" $* | sed 's?N *[[] ??° | sed 's?N *[]]$??
<CODE ENDS>

That is, if the above script is stored in a file called "extract.sh"
and this docunent is in a file called "spec.txt", then the reader can
do:

sh extract.sh < spec.txt > flex files_prot.x

The effect of the script is to renove | eading white space from each
line, plus a sentinel sequence of "///".

The enbedded XDR file header follows. Subsequent XDR descriptions
with the sentinel sequence are enbedded throughout the docunent.

Note that the XDR code contained in this docunent depends on types
fromthe NFSv4.1 nfs4 prot.x file [RFC5662]. This includes both nfs
types that end with a 4, such as offset4, length4, etc., as well as
nore generic types such as uint32_t and uint64_t.

3.1. Code Conponents Licensing Notice
Both the XDR description and the scripts used for extracting the XDR
description are Code Conponents as described in Section 4 of "Trust
Legal Provisions (TLP)" [LEGAL]. These Code Conponents are |icensed
according to the ternms of that docunent.

<CODE BEG NS>

1l r*

/11 * Copyright (c) 2018 I ETF Trust and the persons identified
/1l * as authors of the code. All rights reserved.

I *

/1l * Redistribution and use in source and binary fornms, wth
/1l * or without nodification, are permtted provided that the
/1l * following conditions are net:

1l *

/1l * - Redistributions of source code nust retain the above
I * copyright notice, this list of conditions and the

Il * foll owi ng di scl ai ner.

Hal evy & Haynes St andards Track [Page 14]

RFC 8435 pNFS Fl exi bl e File Layout August 2018
rrr =
/1l * - Redistributions in binary form nmust reproduce the above
N copyright notice, this list of conditions and the
N foll owi ng disclainmer in the docunentation and/or other
Il * materials provided with the distribution.
rrr =
/1l * - Neither the nane of Internet Society, |ETF or |IETF
1 * Trust, nor the names of specific contributors, may be
N used to endorse or pronote products derived fromthis
N software wi thout specific prior witten perm ssion.
rrr =
rrr = THI S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS
rrr = AND CONTRI BUTORS "AS |'S" AND ANY EXPRESS OR | MPLI ED
1 * WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE
Hr* | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS
Hr* FOR A PARTI CULAR PURPCSE ARE DI SCLAI MED. I N NO
rrr = EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE
rrr = LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,
rrr = EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG BUT
= NOT LI M TED TO PROCUREMENT OF SUBSTI TUTE GOODS OR
Hr* SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS
Hr* | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
rrr = LI ABI LI TY, WHETHER | N CONTRACT, STRICT LI ABILITY,
rrr = OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
rrr = IN ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN I|F
1 * ADVI SED OF THE PGSSI BI LI TY OF SUCH DAMAGE.
Hr =
/1l * This code was derived from RFC 8435.
/1l * Please reproduce this note if possible.
1 *l
I
Hrr*
111 * flex_files_prot.x
Il *
111
rrrr*
/1l * The follow ng include statenents are for exanple only.
/11 * The actual XDR definition files are generated separately
/11 * and independently and are likely to have a different nane.
/11l * %tinclude <nfsv42. x>
/1l * %#include <rpc_prot.x>
1 *l
I
<CODE ENDS>

Hal evy & Haynes St andards Track [Page 15]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

4.

4,

Devi ce Addressing and Di scovery

Data operations to a storage device require the client to know the
networ k address of the storage device. The NFSv4. 1+ GETDEVI CEI NFO
operation (Section 18.40 of [RFC5661]) is used by the client to
retrieve that information
1. ff_device_addr4

The ff_device_addr4 data structure is returned by the server as the
| ayout -t ype-speci fic opaque field da_addr_body in the device_addr4
structure by a successful GETDEVI CEI NFO operation

<CCODE BEG NS>

/1l struct ff_device_versions4d {

111 uint32_t ffdv_version

11/ uint32_t ffdv_m norversion
111 uint32_t ffdv_rsize;

111 uint32_t ffdv_wsi ze;

111 bool ffdv_tightly_coupl ed
1y

/11

/1l struct ff_device_ addr4 {

111 multipath list4 ffda_net addrs;
111 ff_device_versions4 ffda_versions<>
1y

/11

<CODE ENDS>

The ffda_netaddrs field is used to | ocate the storage device. It

MUST be set by the server to a list holding one or nore of the device
net wor k addr esses.

The ffda versions array allows the netadata server to present choices
as to NFS version, ninor version, and coupling strength to the
client. The ffdv_version and ffdv_mninorversion represent the NFS
protocol to be used to access the storage device. This |ayout
specification defines the semantics for ffdv_versions 3 and 4. |If
ffdv_version equals 3, then the server MJST set ffdv_mi norversion to
0 and ffdv_tightly coupled to false. The client MJST then access the
storage device using the NFSv3 protocol [RFC1813]. |If ffdv_version
equal s 4, then the server MJST set ffdv_ninorversion to one of the
NFSv4 m nor version nunbers, and the client MJST access the storage
device using NFSv4 with the specified m nor version

Hal evy & Haynes St andards Track [Page 16]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

Note that while the client mght deternine that it cannot use any of
the configured conbinations of ffdv_version, ffdv_m norversion, and
ffdv_tightly_coupled, when it gets the device list fromthe netadata
server, there is no way to indicate to the netadata server as to

whi ch device it is version inconpatible. However, if the client
waits until it retrieves the layout fromthe netadata server, it can
at that time clearly identify the storage device in question (see
Section 5.4).

The ffdv_rsize and ffdv_wsize are used to comruni cate the nmaxi num
rsize and wsi ze supported by the storage device. As the storage
device can have a different rsize or wsize than the netadata server
the ffdv_rsize and ffdv_wsize allow the netadata server to

communi cate that information on behalf of the storage device.

ffdv_tightly coupled infornms the client as to whether or not the

nmet adata server is tightly coupled with the storage devices. Note
that even if the data protocol is at least NFSv4.1, it may still be
the case that there is loose coupling in effect. |If
ffdv_tightly_coupled is not set, then the client MIST commit wites
to the storage devices for the file before sending a LAYQUTCOWM T to
the nmetadata server. That is, the wites MIST be committed by the
client to stable storage via issuing WRITEs with stable_how ==

FILE SYNC or by issuing a COMT after WRITEs with stable how ! =

FI LE_ SYNC (see Section 3.3.7 of [RFC1813]).

4.2. Storage Device Miltipathing

The flexible file layout type supports nultipathing to multiple
storage devi ce addresses. Storage-device-level nultipathing is used
for bandwi dth scaling via trunking and for higher availability of use
in the event of a storage device failure. Miltipathing allows the
client to switch to another storage device address that nay be that
of another storage device that is exporting the same data stripe
unit, wthout having to contact the netadata server for a new | ayout.

To support storage device multipathing, ffda netaddrs contains an
array of one or nore storage device network addresses. This array
(data type multipath_list4) represents a list of storage devices
(each identified by a network address), with the possibility that
some storage device will appear in the list multiple tines.

The client is free to use any of the network addresses as a
destination to send storage device requests. |f sone network
addresses are | ess desirable paths to the data than others, then the
nmet adata server SHOULD NOT incl ude those network addresses in
ffda_netaddrs. |If |ess desirable network addresses exist to provide
failover, the RECOMENDED nethod to offer the addresses is to provide

Hal evy & Haynes St andards Track [Page 17]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

themin a replacenent device-ID-to-device-address napping or a

repl acenent device ID. Wen a client finds no response fromthe
storage device using all addresses available in ffda_netaddrs, it
SHOULD send a GETDEVICEINFO to attenpt to replace the existing

devi ce-1D-to-devi ce-address mappings. |f the netadata server detects
that all network paths represented by ffda netaddrs are unavail abl e,
the nmetadata server SHOULD send a CB NOTIFY DEVICEID (if the client
has indicated it wants device ID notifications for changed device

I Ds) to change the device-IDto-device-address nappings to the

avail abl e addresses. If the device IDitself will be replaced, the
nmet adata server SHOULD recall all layouts with the device ID and thus
force the client to get new |l ayouts and device | D nmappings via
LAYOQUTGET and GETDEVI CElI NFO.

Cenerally, if two network addresses appear in ffda_netaddrs, they

wi |l designate the sane storage device. When the storage device is
accessed over NFSv4.1 or a higher mnor version, the two storage

devi ce addresses will support the inplenentation of client ID or
session trunking (the latter is RECOMWENDED) as defined in [RFC5661].
The two storage device addresses will share the sane server owner or
major | D of the server owner. It is not always necessary for the two
storage device addresses to designate the same storage device with
trunki ng being used. For exanple, the data could be read-only, and
the data consi st of exact replicas.

5. Flexible File Layout Type
The original |ayouttype4 introduced in [RFC5662] is nodified to be:
<CCDE BEG NS>

enum | ayouttyped {

LAYOUT4_NFSV4_1 FILES =1
LAYOUT4_0OSD2_OBJECTS = 2,
LAYOUT4_BLOCK_VOLUME =3
LAYOUT4_FLEX_FI LES =4

i

struct layout_content4 {
| ayoutt ype4 | oc_type;
opaque | oc_body<>;

Hal evy & Haynes St andards Track [Page 18]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

struct layoutd {

of fset4 | o_of fset;
| engt h4 | o_I engt h;
| ayout i onode4 | o_i onode;
| ayout _content4 | o_content;
i
<CODE ENDS>

Thi s docunent defines structures associated with the | ayouttype4

val ue LAYOUT4 FLEX FILES. [RFC5661] specifies the | oc_body structure
as an XDR type "opaque". The opaque layout is uninterpreted by the
generic pNFS client layers but is interpreted by the flexible file

| ayout type inplenmentation. This section defines the structure of
this otherw se opaque val ue, ff_|ayout4.

5.1. ff_layout4d

<CODE BEG NS>

/1] const FF_FLAGS_NO LAYQUTCOM T = 0x00000001
/1l const FF_FLAGS NO | O THRU MDS = 0x00000002
/1l const FF_FLAGS NO READ | O = 0x00000004;
/1] const FF_FLAGS WRI TE_ONE_M RROR = 0x00000008;
/1] typedef uint32 t ff_flags4,

111

/1l struct ff_data_server4d {

11/ devi cei d4 ffds_deviceid

111 uint32_t ffds_efficiency;
111 statei d4 ffds_stateid,

111 nfs_fh4 ffds_fh_vers<>
Iy fattr4_owner ffds_user;

1 fattr4_owner _group ffds_group

Iy},

111

[/l struct ff_mrrord {

Iy ff _data server4 ffmdata servers<>
11y},

111

/1] struct ff _layoutd {

111 | engt h4 ffl_stripe_unit;
Iy ff mrror4d ffl _mrrors<>

1 ff_flags4 ffl_flags

11/ uint32_t ffl _stats _collect_hint;

Hal evy & Haynes St andards Track [Page 19]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

1y
111

<CODE ENDS>

The ff _layout4 structure specifies a layout in that portion of the
data file described in the current |ayout segnent. It is either a
single instance or a set of mirrored copies of that portion of the
data file. Wen mirroring is in effect, it protects against |oss of
data in |layout segments

While not explicitly shown in the above XDR, each |ayout4 el enent
returned in the |l ogr_|ayout array of LAYOUTGET4res (see

Section 18.43.2 of [RFC5661]) describes a |layout segnment. Hence,
each ff_layout4 also describes a layout segnent. It is possible that
the file is concatenated from nore than one |ayout segnment. Each

| ayout segnent MAY represent different striping paranmeters.

The ffl _stripe_unit field is the stripe unit size in use for the
current layout segnent. The nunber of stripes is given inside each
mrror by the nunber of elements in ffmdata_servers. |f the nunber
of stripes is one, then the value for ffl_stripe_unit MJST default to
zero. The only supported mapping schene is sparse and is detailed in
Section 6. Note that there is an assunption here that both the
stripe unit size and the nunber of stripes are the sanme across al
mrrors.

The ffl _mrrors field is the array of mrrored storage devices that
provide the storage for the current stripe; see Figure 1

The ffl _stats collect_hint field provides a hint to the client on how

often the server wants it to report LAYOUTSTATS for a file. The tinme
is in seconds.

Hal evy & Haynes St andards Track [Page 20]

RFC 8435

pNFS Fl exi bl e File Layout

August 2018

Hal evy & Haynes

. +
| |
| |
| File |
| |
| |
Fommnn S e +
I . +
| |
[S S + L +--- -+
| Mrror 1 | | Mrror 2
N + Fommnn oot
| |
I + I +
|+ ----------- + |+ ----------- +
[|+----------- + [|+-----------
+|| Storage | +|| Storage
+| Devices | +| Devices
N + N +
Figure 1

The ffs mrrors field represents an array of state information for
each mirrored copy of the current |ayout segnent. Each elenent is
described by a ff_mirror4 type.

ffds_deviceid provides the deviceid of the storage device holding the
data file.

ffds fh vers is an array of filehandles of the data file matching the
avai | abl e NFS versions on the given storage device. There MJST be
exactly as many elenments in ffds_fh_vers as there are in
ffda_versions. Each elenent of the array corresponds to a particul ar
conbi nation of ffdv_version, ffdv_m norversion, and

ffdv_tightly coupled provided for the device. The array allows for
server inplenentations that have different filehandles for different
conbi nations of version, ninor version, and coupling strength. See
Section 5.4 for how to handl e versioning issues between the client
and storage devi ces.

For tight coupling, ffds stateid provides the stateid to be used by
the client to access the file. For |oose coupling and an NFSv4
storage device, the client will have to use an anonynous stateid to
performl1/O on the storage device. Wth no control protocol, the
nmet adat a server stateid cannot be used to provide a global stateid
nodel . Thus, the server MJST set the ffds_stateid to be the
anonynous stateid.

St andards Track [Page 21]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

This specification of the ffds stateid restricts both nodels for
NFSv4. x storage protocols:

| oosely coupled nodel: the stateid has to be an anonynous stateid
tightly coupled nodel: the stateid has to be a global stateid

A nunber of issues stemfroma msmatch between the fact that
ffds_stateid is defined as a single itemwhile ffds_fh_vers is
defined as an array. It is possible for each open file on the
storage device to require its own open stateid. Because there are
est abl i shed | oosely coupl ed i npl enentati ons of the version of the
protocol described in this docunent, such potential issues have not
been addressed here. It is possible for future layout types to be
defined that address these issues, should it become inportant to
provide multiple stateids for the sane underlying file.

For | oosely coupled storage devices, ffds user and ffds_group provide
the synthetic user and group to be used in the RPC credentials that
the client presents to the storage device to access the data files.
For tightly coupled storage devices, the user and group on the
storage device will be the same as on the nmetadata server; that is,

if ffdv_tightly _coupled (see Section 4.1) is set, then the client
MUST i gnore both ffds_user and ffds_group

The al |l owed val ues for both ffds _user and ffds_group are specified as
owner and owner _group, respectively, in Section 5.9 of [RFC5661].

For NFSv3 conpatibility, user and group strings that consist of

deci mal numeric values with no | eading zeros can be given a speci al
interpretation by clients and servers that choose to provide such
support. The receiver may treat such a user or group string as
representing the sane user as woul d be represented by an NFSv3 uid or
gid having the corresponding nunmeric value. Note that if using
Kerberos for security, the expectation is that these values will be a
nane@onmai n string.

ffds_efficiency describes the netadata server’s evaluation as to the
ef fectiveness of each mirror. Note that this is per |ayout and not
per device as the netric may change due to perceived | oad,
availability to the netadata server, etc. Higher values denote

hi gher perceived utility. The way the client can select the best
mrror to access is discussed in Section 8.1.

ffl _flags is a bitmap that allows the netadata server to informthe

client of particular conditions that may result fromnore or |ess
tight coupling of the storage devices.

Hal evy & Haynes St andards Track [Page 22]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

5.

5.

FF_FLAGS NO LAYQUTCOMWM T: can be set to indicate that the client is
not required to send LAYOUTCOWM T to the netadata server.

FF_FLAGS NO IO THRU MDS: can be set to indicate that the client
shoul d not send I/O operations to the netadata server. That is,
even if the client could deternmi ne that there was a network
di sconnect to a storage device, the client should not try to proxy
the 1/0 through the netadata server.

FF_FLAGS NO READ IO can be set to indicate that the client should
not send READ requests with the layouts of ionode
LAYQUTI OMODE4_RW Instead, it should request a | ayout of ionode
LAYQUTI OMODE4_READ from t he netadata server.

FF_FLAGS WRI TE_ ONE. M RROR can be set to indicate that the client
only needs to update one of the mrrors (see Section 8.2).

1.1. Error Codes from LAYOUTGET

[RFC5661] provides little guidance as to how the client is to proceed
with a LAYOUTGET that returns an error of either

NFSAERR LAYOQUTTRYLATER, NFS4ERR _LAYOUTUNAVAI LABLE, and NFS4ERR DELAY.
Wthin the context of this docunent:

NFSAERR LAYOUTUNAVAI LABLE: there is no |layout available and the I/0O
is to go to the netadata server. Note that it is possible to have
had a | ayout before a recall and not after.

NFSAERR _LAYOQUTTRYLATER there is sone issue preventing the | ayout
frombeing granted. |If the client already has an appropriate
| ayout, it should continue with I/Oto the storage devices.

NFS4ERR_DELAY: there is some issue preventing the |ayout from being
granted. If the client already has an appropriate layout, it
shoul d not continue with I/Oto the storage devices.

1.2. dient Interactions with FF_FLAGS NO | O THRU MDS

Even if the nmetadata server provides the FF_FLAGS NO | O THRU MBS
flag, the client can still performl/Oto the nmetadata server. The
flag functions as a hint. The flag indicates to the client that the
nmet adata server prefers to separate the netadata I/O fromthe data I/
O nost likely for perfornance reasons.

Hal evy & Haynes St andards Track [Page 23]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

5.2. LAYQUTCOW T

The flexible file layout does not use |ou_body inside the

| oca_I| ayout updat e argument to LAYOUTCOWM T. If lou_type is
LAYOUT4_FLEX FILES, the lou_body field MIST have a zero length (see
Section 18.42.1 of [RFC5661]).

5.3. Interactions between Devices and Layouts

In [RFC5661], the file layout type is defined such that the

rel ati onship between multipathing and fil ehandl es can result in
either 0, 1, or N filehandles (see Section 13.3). Sone rationales
for this are clustered servers that share the sanme fil ehandl e or
allow for nultiple read-only copies of the file on the sane storage
device. In the flexible file layout type, while there is an array of
filehandl es, they are independent of the multipathing being used. |If
the nmetadata server wants to provide nultiple read-only copies of the
sanme file on the sane storage device, then it should provide nultiple
mrrored i nstances, each with a different ff_device _addr4. The
client can then determine that, since the each of the ffds_fh_vers
are different, there are nultiple copies of the file for the current

| ayout segnent avail abl e.

5.4. Handling Version Errors

Wien the netadata server provides the ffda_versions array in the
ff_device_addr4 (see Section 4.1), the client is able to determnine
whet her or not it can access a storage device with any of the
suppl i ed conbi nations of ffdv_version, ffdv_m norversion, and
ffdv_tightly coupled. However, due to the limtations of reporting
errors in GETDEVI CEI NFO (see Section 18.40 in [RFC5661]), the client
is not able to specify which specific device it cannot communicate
with over one of the provided ffdv_version and ffdv_mni norversion
conmbi nations. Using ff_ioerrd4 (see Section 9.1.1) inside either the
LAYOUTRETURN (see Section 18.44 of [RFC5661]) or the LAYOUTERROR (see
Section 15.6 of [RFC7862] and Section 10 of this docunent), the
client can isolate the problematic storage device.

The error code to return for LAYOUTRETURN and/or LAYOUTERROR i s
NFS4ERR M NOR VERS M SMATCH. It does not natter whether the m smatch
is a mjor version (e.g., client can use NFSv3 but not NFSv4) or

m nor version (e.g., client can use NFSv4.1 but not NFSv4.2), the
error indicates that for all the supplied conbinations for
ffdv_version and ffdv_mninorversion, the client cannot comunicate
with the storage device. The client can retry the CGETDEVI CEINFO to
see if the nmetadata server can provide a different conbination, or it
can fall back to doing the I/O through the netadata server

Hal evy & Haynes St andards Track [Page 24]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

6. Striping via Sparse Mapping

Whil e other |ayout types support both dense and sparse mappi ng of

| ogi cal offsets to physical offsets within a file (see, for exanple,
Section 13.4 of [RFC5661]), the flexible file layout type only
supports a sparse mappi ng.

Wth sparse mappings, the logical offset within a file (L) is also
t he physical offset on the storage device. As detailed in

Section 13.4.4 of [RFC5661], this results in holes across each
storage device that does not contain the current stripe index.

L: logical offset within the file

W stripe width
W = nunber of elenents in ffmdata servers

S: nunber of bytes in a stripe
S=W* ffl _stripe_unit

N: stripe nunber
N=L/ S

7. Recovering fromCient I/O Errors

The pNFS client may encounter errors when directly accessing the
storage devices. However, it is the responsibility of the netadata
server to recover fromthe I/O errors. Wen the LAYOUT4 FLEX FILES
| ayout type is used, the client MIJST report the I/Oerrors to the
server at LAYOUTRETURN tine using the ff_ioerr4 structure (see
Section 9.1.1).

The netadata server analyzes the error and determines the required
recovery operations such as recovering nedia failures or
reconstructing mssing data files.

The nmetadata server MJST recall any outstanding |ayouts to allow it
exclusive wite access to the stripes being recovered and to prevent
other clients fromhitting the same error condition. In these cases,
the server MUST conplete recovery before handing out any new | ayouts
to the affected byte ranges.

Al though the client inplenmentation has the option to propagate a
corresponding error to the application that initiated the 1/0
operation and drop any unwitten data, the client should attenpt to
retry the original 1/0O operation by either requesting a new | ayout or
sending the 1/0O via regular NFSv4. 1+ READ or WRI TE operations to the
nmet adata server. The client SHOULD attenpt to retrieve a new | ayout

Hal evy & Haynes St andards Track [Page 25]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

and retry the I/O operation using the storage device first and only
retry the 1/O operation via the netadata server if the error
persi sts.

8. Mrroring

The flexible file layout type has a sinple nodel in place for the
mrroring of the file data constrained by a | ayout segnent. There is
no assunption that each copy of the nmirror is stored identically on
the storage devices. For exanple, one device mght enpl oy
conpression or deduplication on the data. However, the over-the-wire
transfer of the file contents MJST appear identical. Note, this is a
constraint of the selected XDR representation in which each mirrored
copy of the layout segnent has the sane striping pattern (see

Figure 1).

The nmetadata server is responsible for determ ning the nunber of
mrrored copies and the location of each mirror. Wiile the client
may provide a hint to how many copies it wants (see Section 12), the
net adata server can ignore that hint; in any event, the client has no
means to dictate either the storage device (which also neans the
coupling and/or protocol levels to access the | ayout segnents) or the
| ocation of said storage device.

The updating of mrrored | ayout segnents is done via client-side
mrroring. Wth this approach, the client is responsible for naking
sure nodifications are made on all copies of the |layout segnents it
is informed of via the layout. |If a layout segment is being
resilvered to a storage device, that mrrored copy will not be in the
| ayout. Thus, the netadata server MJST update that copy until the
client is presented it in a layout. |f the FF_FLAGS WRI TE ONE_M RROR
is set in ffl_flags, the client need only update one of the nmirrors
(see Section 8.2). |If the client is witing to the [ayout segnents
via the netadata server, then the netadata server MJST update al
copies of the mrror. As seen in Section 8.3, during the
resilvering, the layout is recalled, and the client has to nake

nodi fications via the netadata server.

8.1. Selecting a Mrror

When the netadata server grants a layout to a client, it MAY let the
client know how fast it expects each mirror to be once the request
arrives at the storage devices via the ffds_efficiency nmenber. Wile
the algorithms to calculate that value are left to the netadata
server inplenmentations, factors that could contribute to that

cal cul ation include speed of the storage device, physical nmenory
avail able to the device, operating systemversion, current |oad, etc.

Hal evy & Haynes St andards Track [Page 26]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

However, what should not be involved in that calculation is a

percei ved network di stance between the client and the storage device.
The client is better situated for making that deternination based on
past interaction with the storage device over the different avail able
network interfaces between the two; that is, the netadata server

m ght not know about a transient outage between the client and
storage devi ce because it has no presence on the given subnet.

As such, it is the client that decides which mrror to access for
reading the file. The requirenents for witing to mrrored | ayout
segnents are presented bel ow

8.2. Witing to Mrrors
8.2.1. Single Storage Device Updates Mrrors

If the FF_FLAGS WRITE_ ONE M RROR flag in ffl_flags is set, the client
only needs to update one of the copies of the |ayout segnent. For
this case, the storage device MJST ensure that all copies of the
mrror are updated when any one of the nmirrors is updated. |If the
storage device gets an error when updating one of the mrrors, then
it MUST informthe client that the original WRITE had an error. The
client then MIUST informthe nmetadata server (see Section 8.2.3). The
client’s responsibility with respect to COWMT is explained in
Section 8.2.4. The client may choose any one of the mirrors and nay
use ffds_efficiency as described in Section 8.1 when making this

choi ce.

8.2.2. dient Updates All Mrrors

If the FF_FLAGS WRITE ONE M RROR flag in ffl _flags is not set, the
client is responsible for updating all nmirrored copies of the |ayout
segrments that it is given in the layout. A single failed update is
sufficient to fail the entire operation. |If all but one copy is
updat ed successfully and the | ast one provides an error, then the
client needs to informthe netadata server about the error. The
client can use either LAYOUTRETURN or LAYOUTERROR to informthe

net adata server that the update failed to that storage device. |If
the client is updating the mirrors serially, then it SHOULD stop at
the first error encountered and report that to the netadata server.
If the client is updating the mrrors in parallel, then it SHOULD
wait until all storage devices respond so that it can report all
errors encountered during the update.

Hal evy & Haynes St andards Track [Page 27]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

8.2.3. Handling Wite Errors

Wien the client reports a wite error to the netadata server, the

nmet adata server is responsible for determining if it wants to renove
the errant mirror fromthe layout, if the mrror has recovered from
sonme transient error, etc. Wen the client tries to get a new

| ayout, the netadata server inforns it of the decision by the
contents of the layout. The client MJUST NOT assune that the contents
of the previous layout will match those of the new one. |If it has
updates that were not committed to all mrrors, then it MJST resend
those updates to all mrrors.

There is no provision in the protocol for the netadata server to
directly determine that the client has or has not recovered froman
error. For exanple, if a storage device was network partitioned from
the client and the client reported the error to the netadata server,
then the network partition would be repaired, and all of the copies
woul d be successfully updated. There is no nechanismfor the client
to report that fact, and the netadata server is forced to repair the
file across the mirror.

If the client supports NFSv4.2, it can use LAYOUTERROR and
LAYOUTRETURN to provide hints to the netadata server about the
recovery efforts. A LAYOUTERROR on a file is for a non-fatal error.
A subsequent LAYOUTRETURN wi thout a ff _ioerr4 indicates that the
client successfully replayed the 1/Oto all mirrors. Any
LAYOUTRETURN with a ff_ioerr4 is an error that the netadata server
needs to repair. The client MJST be prepared for the LAYOUTERROR to
trigger a CB_LAYOQUTRECALL if the netadata server determnes it needs
to start repairing the file.

8.2.4. Handling Wite COW Ts

When stable wites are done to the netadata server or to a single
replica (if allowed by the use of FF_FLAGS WRITE ONE M RROR), it is
the responsibility of the receiving node to propagate the witten
data stably, before replying to the client.

In the correspondi ng cases in which unstable wites are done, the
recei ving node does not have any such obligation, although it may
choose to asynchronously propagate the updates. However, once a
COM T is replied to, all replicas nust reflect the wites that have
been done, and this data nust have been committed to stable storage
on all replicas.

Hal evy & Haynes St andards Track [Page 28]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

In order to avoid situations in which stale data is read from
replicas to which wites have not been propagated:

0o Aclient that has outstanding unstable wites nmade to single node
(et adata server or storage device) MJST do all reads fromthat
same node

o Wen wites are flushed to the server (for exanple, to inplenent
cl ose-to-open semantics), a COWM T nust be done by the client to
ensure that up-to-date witten data will be available irrespective
of the particular replica read.

8.3. Metadata Server Resilvering of the File

The nmetadata server may elect to create a new mrror of the |ayout
segnments at any time. This nmight be to resilver a copy on a storage
device that was down for servicing, to provide a copy of the |ayout
segnments on storage with different storage perfornance
characteristics, etc. As the client will not be aware of the new
mrror and the netadata server will not be aware of updates that the
client is making to the layout segnents, the metadata server MJIST
recall the witable | ayout segnent(s) that it is resilvering. |f the
client issues a LAYQUTGET for a witable |ayout segnent that is in
the process of being resilvered, then the netadata server can deny
that request with an NFS4ERR LAYOUTUNAVAI LABLE. The client would
then have to performthe I/0O through the netadata server

9. Flexible File Layout Type Return
| ayoutreturn_filed4 is used in the LAYOUTRETURN operation to convey
| ayout -type-specific information to the server. It is defined in
Section 18.44.1 of [RFC5661] as foll ows:

<CODE BEG NS>

/* Constants used for LAYOUTRETURN and CB LAYOQUTRECALL */

const LAYOUT4_RET_REC_FI LE =1
const LAYOUT4_RET_REC FSID = 2;
const LAYOUT4_RET_REC ALL = 3

enum | ayoutreturn_typed {
LAYOUTRETURNA_FI LE
LAYOUTRETURN4_FSI D
LAYOUTRETURNA_ALL

LAYOUT4_RET_REC_FI LE,
LAYOUT4_RET_REC_FSI D,
LAYOUT4_RET_REC_ALL

b

struct layoutreturn_filed {
of fset4 I rf _offset;

Hal evy & Haynes St andards Track [Page 29]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

| engt h4 I rf _length;
statei d4 I rf_stateid;

/* layouttyped specific data */
opaque I rf_body<>;

H

union layoutreturn4 switch(layoutreturn_type4 |Ir_returntype) {
case LAYOUTRETURNA_FI LE:
| ayoutreturn_fil e4d I r_layout;
defaul t:
voi d;

b

struct LAYOUTRETURMargs {
/* CURRENT_FH: file */

bool lora_reclaim
| ayoutt ype4 | ora_Il ayout _type;
| ayout i onode4 | ora_i onode;
| ayout return4 | ora_| ayoutreturn;
i
<CODE ENDS>

If the lora_layout type layout type is LAYOUT4 _FLEX FILES and the
Ir_returntype is LAYOUTRETURNA FI LE, then the |rf_body opaque val ue
is defined by ff_layoutreturnd4 (see Section 9.3). This allows the
client to report I/Oerror information or |ayout usage statistics
back to the netadata server as defined below. Note that while the
data structures are built on concepts introduced in NFSv4.2, the
effective discrimnated union (lora_layout type conbined with

ff layoutreturnd4) allows for an NFSv4.1 netadata server to utilize
t he dat a.

9.1. I/O Error Reporting
9.1.1. ff ioerr4d
<CODE BEG NS>

/1l struct ff_ioerr4d {

111 of fset4 ffie_ offset;
11/ | engt h4 ffie_ length;
111 statei d4 ffie stateid;
111 device_errord4 ffie_errors<>;
111y

111

<CODE ENDS>

Hal evy & Haynes St andards Track [Page 30]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

Recal | that [RFC7862] defines device error4 as:
<CODE BEG NS>

struct device_errord {

devi cei d4 de_devi cei d;
nf sstat4 de_st at us;
nfs_opnumd de_opnum

s

<CODE ENDS>

The ff _ioerr4 structure is used to return error indications for data
files that generated errors during data transfers. These are hints
to the netadata server that there are problems with that file. For
each error, ffie_ errors.de_deviceid, ffie offset, and ffie_|length
represent the storage device and byte range within the file in which
the error occurred; ffie errors represents the operation and type of
error. The use of device error4 is described in Section 15.6 of

[RFC7862] .

Even though the storage device m ght be accessed via NFSv3 and
reports back NFSv3 errors to the client, the client is responsible
for mapping these to appropriate NFSv4 status codes as de_status.
Li kewi se, the NFSv3 operations need to be napped to equival ent NFSv4
operations.

9.2. Layout Usage Statistics

9.2.1. ff _io_ latency4
<CCODE BEG NS>

/1l struct ff_io_latency4 {

111 ui nt 64 _t ffil_ops_requested;

11/ ui nt 64 _t ffil _bytes requested;

111 ui nt 64 _t ffil _ops_conpl et ed;

111 ui nt 64 _t ffil _bytes conpl et ed;

111 ui nt 64_t ffil _bytes _not_delivered;

Iy nfsti ne4 ffil _total busy_tine;

1 nf sti me4 ffil _aggregate_conpletion_tine;
Iy},

111

<CODE ENDS>

Hal evy & Haynes St andards Track [Page 31]

RFC 8435 pNFS Fl exi bl e File Layout August 2018

Bot h operation counts and bytes transferred are kept in the

ff io latency4d. As seen in ff_layoutupdate4 (see Section 9.2.2),
READ and WRI TE operations are aggregated separately. READ operations
are used for the ff_io_|latency4 ffl _read. Both WRITE and COWM T
operations are used for the ff_io_latency4 ffl_wite. "Requested"
counters track what the client is attenpting to do, and "conpl et ed"
counters track what was done. There is no requirenent that the
client only report conpleted results that have matchi ng requested
results fromthe reported period.

ffil_bytes not_delivered is used to track the aggregate nunber of
bytes requested but not fulfilled due to error conditions.

ffil total busy time is the aggregate tine spent with outstanding RPC
calls. ffil _aggregate conpletion_ tine is the sumof all round-trip
times for conpleted RPC calls.

In Section 3.3.1 of [RFC5661], the nfstime4 is defined as the nunber
of seconds and nanoseconds since nidnight or zero hour January 1

1970 Coordinated Universal Tinme (UTC). The use of nfstinme4 in

ff io_latency4 is to store tine since the start of the first I/0O from
the client after receiving the layout. |In other words, these are to
be decoded as duration and not as a date and tine.

Not e that LAYOUTSTATS are cunul ative, i.e., not reset each tine the
operation is sent. |If two LAYOUTSTATS operations for the sane file
and | ayout stateid originate fromthe same NFS client and are
processed at the sanme tinme by the netadata server, then the one
contai ning the | arger values contains the nost recent tine seri